Skip to main content
Log in

Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive

Influence of various surface treatment methods

Haftfestigkeit von mit lichtgehärtetem Adhäsiv auf silikatbasierter Keramik aufgebrachten Metallbrackets

Einfluss unterschiedlicher Methoden zur Oberflächenbehandlung

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The purpose of this work was to evaluate the effects of several surface treatment methods on the shear bond strengths of metal brackets bonded to a silica-based ceramic with a light-cured adhesive.

Materials and methods

Silica-based ceramic (IPS Classic®) with glazed surfaces was cut into discs that were used as substrates. A total of 80 specimens were randomly divided into four groups according to the method used: 9.6 % hydrofluoric acid (group 1), 9.6 % hydrofluoric acid (HF) + silane coupling agent (group 2), sandblasting (aluminum trioxide, 50 μm) + silane (group 3), and tribochemical silica coating (CoJet™ sand, 30 μm) + silane (group 4). Brackets were bonded to the treated specimens with a light-cure adhesive (Transbond XT, 3 M Unitek). Shear bond strength was tested after bracket bonding, and the Adhesive Remnant Index (ARI) scores were quantified after debonding.

Results

Group 4 showed the highest bond strength (12.3 ± 1.0 MPa), which was not significantly different from that of group 3 (11.6 ± 1.2 MPa, P > 0.05); however, the bond strength of group 4 was substantially higher than that of group 2 (9.4 ± 1.1 MPa, P < 0.05). The shear bond strength of group 1 (3.1 ± 0.6 MPa, P< 0.05) was significantly lower than that of the other groups.

Conclusion

Shear bond strengths exceeded the optimal range of ideal bond strength for clinical practice, except for the isolated HF group. HF acid etching followed by silane was the best suited method for bonding on IPS Classic®. Failure modes in the sandblasting and silica-coating groups revealed signs of damaged ceramic surfaces.

Zusammenfassung

Zielsetzung

Evaluiert werden sollte, wie unterschiedliche Oberflächenbehandlungsmethoden die Scherhaftfestigkeit von mit lichtgehärtetem Adhäsiv auf silikatbasierter Keramik aufgebrachten Metallbrackets beeinflussen.

Material und Methoden

Als Substrate diente in Scheiben geschnittene silikatbasierte Keramik (IPS Classic®) mit Oberflächenglasur. Insgesamt 80 Proben wurden randomisiert auf 4 Gruppen verteilt, je nach eingesetztem Verfahren: 9,6 % Hydrofluorsäure (HF; Gruppe 1), 9,6 % HF + Silanhaftvermittler (Gruppe 2), Pulverstrahlbehandlung (Aluminiumtrioxid, 50 μm) + Silan (Gruppe 3) und tribochemische Silikatbeschichtung (CoJet™ Sand, 30 μm) + Silan (Gruppe 4). Die Brackets wurden auf die behandelten Proben mit einem lichthärtenden Adhesiv (Transbond XT, 3 M Unitek) aufgebracht. Nach dem Bonding wurde die Scherhaftfestigkeit überprüft, und nach dem Debonding wurden die ARI (Adhesive Remnant Index)-Werte ermittelt.

Ergebnisse

Die höchste Scherhaftfestigkeit bestand in Gruppe 4: 12,3 ± 1,0 MPa. Diese unterschied sie sich allerdings nicht signifikant von der Scherhaftfestigkeit in Gruppe 3 (11,6 ± 1,2 MPa, p > 0,05), war allerdings erheblich höher als die in Gruppe 2 (9,4 ± 1,1 MPa, p < 0,05). In Gruppe 1 war die Scherhaftfestigkeit mit 3,1 ± 0,6 MPa) signifikant geringer (p < 0,05) als in den anderen Gruppen.

Schlussfolgerung

Die Scherhaftfestigkeiten übertrafen den optimalen Bereich für die ideale Haftfestigkeit im Bereich der klinischen Praxis, eine Ausnahme stellte die nur mit HF vorbehandelte Gruppe dar. Eine HF-Ätzung und der anschließende Einsatz von Silan war im Kontext mit dem IPS Classic® die am besten geeignete Methode. In den Gruppen mit Pulverstrahlbehandlung und Silikatbeschichtung zeigte eine detaillierte Analyse der Abscherbrüche Schädigungen auf den Keramikoberflächen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ajlouni R, Bishara SE, Oonsombat C et al (2005) The effect of porcelain surface conditioning on bonding orthodontic brackets. Angle Orthod 75:858–864

    PubMed  Google Scholar 

  2. Amaral R, Ozcan M, Bottino MA et al (2006) Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: the effect of surface conditioning. Dent Mater 22:283–290

    Article  PubMed  Google Scholar 

  3. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85:333–340

    Article  PubMed  Google Scholar 

  4. Blatz MB, Sadan A, Kern M (2003) Resin-ceramic bonding: a review of the literature. J Prosthet Dent 89:268–274

    Article  PubMed  Google Scholar 

  5. Canbek K, Karbach M, Gottschalk F et al. (2013) Evaluation of bovine and human teeth exposed to thermocycling for microleakage under bonded metal brackets. Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie: Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie 74:102–112

  6. Cochran D, O’Keefe KL, Turner DT et al (1997) Bond strength of orthodontic composite cement to treated porcelain. Am J Orthod Dentofacial Orthop 111:297–300

    Article  PubMed  Google Scholar 

  7. Falkensammer F, Freudenthaler J, Pseiner B et al (2012) Influence of surface conditioning on ceramic microstructure and bracket adhesion. Eur J Orthod 34:498–504

    Article  PubMed  Google Scholar 

  8. Gillis I, Redlich M (1998) The effect of different porcelain conditioning techniques on shear bond strength of stainless steel brackets. Am J Orthod Dentofac Orthop 114:387–392

    Article  Google Scholar 

  9. Grewal Bach GK, Torrealba Y, Lagravere MO (2014) Orthodontic bonding to porcelain: a systematic review. Angle Orthod 84:555–560

    Article  PubMed  Google Scholar 

  10. Harari D, Shapira-Davis S, Gillis I et al (2003) Tensile bond strength of ceramic brackets bonded to porcelain facets. Am J Orthod Dentofac Orthop 123:551–554

    Article  Google Scholar 

  11. Karan S, Buyukyilmaz T, Toroglu MS (2007) Orthodontic bonding to several ceramic surfaces: are there acceptable alternatives to conventional methods? Am J Orthod Dentofac Orthop 132:144 (e147–114)

    Article  Google Scholar 

  12. Matinlinna JP, Lassila LV, Ozcan M et al (2004) An introduction to silanes and their clinical applications in dentistry. Int J Prosthodont 17:155–164

    PubMed  Google Scholar 

  13. Nebbe B, Stein E (1996) Orthodontic brackets bonded to glazed and deglazed porcelain surfaces. Am J Orthod Dentofac Orthop 109:431–436

    Article  Google Scholar 

  14. Newburg R, Pameijer CH (1978) Composite resins bonded to porcelain with silane solution. J Am Dent Assoc 96:288–291

    Article  PubMed  Google Scholar 

  15. Newman SM, Dressler KB, Grenadier MR (1984) Direct bonding of orthodontic brackets to esthetic restorative materials using a silane. Am J Orthod 86:503–506

    Article  PubMed  Google Scholar 

  16. Office IOfS (2003) ISO/TS 11405. Dental materials—testing of adhesion to tooth structure. Geneva, Switzerland

  17. Ozcan M (2002) The use of chairside silica coating for different dental applications: a clinical report. J Prosthet Dent 87:469–472

    Article  PubMed  Google Scholar 

  18. Ozcan M, Vallittu PK (2003) Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent Mater 19:725–731

    Article  PubMed  Google Scholar 

  19. Reynolds IR, von Fraunhofer JA (1976) Direct bonding of orthodontic brackets–a comparative study of adhesives. Br J Orthod 3:143–146

    Article  PubMed  Google Scholar 

  20. Sarac YS, Elekdag-Turk S, Sarac D et al (2007) Surface conditioning methods and polishing techniques effect on surface roughness of a feldspar ceramic. Angle Orthod 77:723–728

    Article  PubMed  Google Scholar 

  21. Sarac YS, Kulunk T, Elekdag-Turk S et al (2011) Effects of surface-conditioning methods on shear bond strength of brackets bonded to different all-ceramic materials. Eur J Orthod 33:667–672

    Article  PubMed  Google Scholar 

  22. Schmage P, Nergiz I, Herrmann W et al (2003) Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces. Am J Orthod Dentofac Orthop 123:540–546

    Article  Google Scholar 

  23. Thurmond JW, Barkmeier WW, Wilwerding TM (1994) Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain. J Prosthet Dent 72:355–359

    Article  PubMed  Google Scholar 

  24. Valandro LF, Ozcan M, Bottino MC et al (2006) Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: the effect of surface conditioning. J Adhes Dent 8:175–181

    PubMed  Google Scholar 

  25. Yadav S, Upadhyay M, Borges GA et al (2010) Influence of ceramic (feldspathic) surface treatments on the micro-shear bond strength of composite resin. Angle Orthod 80:765–770

    Article  PubMed  Google Scholar 

  26. Yen TW, Blackman RB, Baez RJ (1993) Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic. J Prosthet Dent 70:224–233

    Article  PubMed  Google Scholar 

  27. Zachrisson BU (2000) Orthodontic bonding to artificial tooth surfaces: clinical versus laboratory findings. Am J Orthod Dentofac Orthop 117:592–594

    Article  Google Scholar 

  28. Zachrisson YO, Zachrisson BU, Buyukyilmaz T (1996) Surface preparation for orthodontic bonding to porcelain. Am J Orthod Dentofac Orthop 109:420–430

    Article  Google Scholar 

  29. Zhang ZC, Giordano R, Shen G et al. (2013) Shear bond strength of an experimental composite bracket. J Orofac Orthop Fortschritte der Kieferorthopadie Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie 74:319–331

Download references

Acknowledgments

The authors would like to thank Zhang Yi for her excellent technical help. This project was supported by the Research Award Fund for Outstanding Young Teachers in Higher Education Institutions, China (Grant No. jdy10046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Shen.

Ethics declarations

Conflict of interest

Z.-C. Zhang, Y.-F. Qian, Y.-M. Yang, Q.-P. Feng, and G. Shen declare that they have no competing interests.

This article does not include any studies with human participants or animals performed by any of the authors.

Additional information

Professor and Department Chair Gang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Zc., Qian, Yf., Yang, Ym. et al. Bond strength of metal brackets bonded to a silica-based ceramic with light-cured adhesive. J Orofac Orthop 77, 366–372 (2016). https://doi.org/10.1007/s00056-016-0044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0044-2

Keywords

Schlüsselwörter

Navigation