Advertisement

MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies

  • Andreas DetterbeckEmail author
  • Michael Hofmeister
  • Elisabeth Hofmann
  • Daniel Haddad
  • Daniel Weber
  • Astrid Hölzing
  • Simon Zabler
  • Matthias Schmid
  • Karl-Heinz Hiller
  • Peter Jakob
  • Jens Engel
  • Jochen Hiller
  • Ursula Hirschfelder
Original Article

Abstract

Objectives

To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest.

Methods

Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies—multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)—and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis.

Results

Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies.

Conclusions

On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

Keywords

Three-dimensional imaging Magnetic resonance imaging Computed tomography Cone-beam computed tomography Multislice computed tomography 

MRT vs. CT für kieferorthopädische Anwendungen: Vergleich von zwei MRT-Protokollen und drei CT-Verfahren (Mehrschicht-CT, CBCT/DVT, industrielle µCT)

Zusammenfassung

Ziel

Ziel dieser Arbeit ist die Einordnung der Magnetresonanztomographie (MRT) in die Bewertung unterschiedlicher dreidimensionaler Bildgebungsverfahren im Hinblick auf kieferorthopädische Fragestellungen und deren Eignung im klinischen Alltag.

Material und Methodik

Drei verblindete Untersucher bewerteten jeweils Schichtbilder und 3-D-Rekonstruktionen einer MSCT-CT (Mehrschicht-Computertomographie), einer CBCT/DVT („cone-beam CT“/dentale digitale Volumentomographie), einer industriellen µCT und zweier MRT-Aufnahmen unterschiedlicher Aufnahmedauer von 2 Schweineköpfen. In den Schichtbildern und den 3-D-Rekonstruktionen wurden mehrere kieferorthopädische Parameter beurteilt. Abschließend wurden zudem alle Datensätze bewertet. Die statistische Analyse erfolgte mittels eines gemischt linearen Modells.

Ergebnisse

In den Schichtbildern unterschied sich die MRT hinsichtlich der Lagebeurteilung der Zahnkeime nicht signifikant von den anderen Methoden. Allerdings ergaben sich mehrere signifikante Unterschiede in den weiteren untersuchten Parametern, die hinsichtlich der Relevanz der einzelnen Parameter interpretiert und bewertet werden müssen. In der 3-D-Rekonstruktion zeigte sich kein signifikanter Unterschied zwischen den einzelnen Verfahren, außer in der Oberflächendarstellung der Wurzel. In einer Abschlussbeurteilung wurde die MRT-Aufnahme mit Standardparametern qualitativ ebenbürtig beurteilt.

Schlussfolgerung

Vergleicht man die Ergebnisse der konventionellen bildgebenden Verfahren mit denen der MRT-Aufnahmen, kann ein erhebliches Potenzial bei der möglichen Integrierung der MRT-Bildgebung in den klinischen Alltag festgestellt werden. Aufgrund dieser Ergebnisse, dem guten Kontrastverhältnis und der völligen Abwesenheit ionisierender Strahlung muss das klinische Potenzial in weiterführenden Studien weiter untersucht werden.

Schlüsselwörter

Dreidimensionale Bildgebung Magnetresonanztomographie Computertomographie Digitale Volumentomographie Mehrschicht-Computertomographie 

Notes

Acknowledgments

The authors wish to thank the German Orthodontic Society for financially supporting this study. They are indebted to Ksenija Belaja, Katrin Schütz, and Theodor Klinker for conducting the ratings.

Compliance with ethical guidelines

Conflicts of interest

Andreas Detterbeck, Michael Hofmeister, Elisabeth Hofmann, Daniel Haddad, Daniel Weber, Astrid Hölzing, Simon Zabler, Matthias Schmid, Karl-Heinz Hiller, Peter Jakob, Jens Engel, Jochen Hiller, and Ursula Hirschfelder state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or living animals.

References

  1. 1.
    Nagarajan A, Perumalsamy R, Thyagarajan R et al (2014) Diagnostic imaging for dental implant therapy. J Clin Imaging Sci 4(Suppl 2):4PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shah N, Bansal N, Logani A (2014) Recent advances in imaging technologies in dentistry. World J Radiol 6(10):794–807PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kim JW, Wu J, Shen SG et al (2015) Interdisciplinary surgical management of multiple facial fractures with image-guided navigation. J Oral Maxillofac Surg 73(9):1767–1777. doi: 10.1016/j.joms.2015.03.029 PubMedCrossRefGoogle Scholar
  4. 4.
    Wojtowicz A, Jodko M, Perek J et al (2014) Interactive 3D imaging technologies: application in advanced methods of jaw bone reconstruction using stem cells/pre-osteoblasts in oral surgery. Wideochirurgia i inne techniki malo inwazyjne = Videosurgery and other miniinvasive techniques/kwartalnik pod patronatem Sekcji Wideochirurgii TChP oraz Sekcji Chirurgii Bariatrycznej TChP 9(3):441–448Google Scholar
  5. 5.
    Boldt F, Weinzierl C, Hertrich K et al (2009) Comparison of the spatial landmark scatter of various 3D digitalization methods. J Orofac Orthop 70(3):247–263PubMedCrossRefGoogle Scholar
  6. 6.
    Greiner M, Greiner A, Hirschfelder U (2007) Variance of landmarks in digital evaluations: comparison between CT-based and conventional digital lateral cephalometric radiographs. J Orofac Orthop 68(4):290–298PubMedCrossRefGoogle Scholar
  7. 7.
    Hanke S, Hirschfelder U, Keller T et al (2012) 3D CT based rating of unilateral impacted canines. J Cranio Maxillo Fac Surg Off Publ Eur Assoc Cranio Maxillo Fac Surg 40(8):e268–e276CrossRefGoogle Scholar
  8. 8.
    Hirschfelder U, Hirschfelder H (1985) Imaging of the form and structure of the mandible by computed tomography. Fortschr Kieferorthop 46(2):138–148PubMedCrossRefGoogle Scholar
  9. 9.
    Hirschfelder U, Petschelt A (1986) Impaction of teeth from an orthodontic point of view. Deutsche zahnarztliche Zeitschrift 41(2):164–170PubMedGoogle Scholar
  10. 10.
    Hofmann E, Schmid M, Lell M et al (2014) Cone beam computed tomography and low-dose multislice computed tomography in orthodontics and dentistry. J Orofac Orthop 75(5):384–398PubMedCrossRefGoogle Scholar
  11. 11.
    Karatas OH, Toy E (2014) Three-dimensional imaging techniques: A literature review. Eur J Dent 8(1):132–140PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Medelnik J, Hertrich K, Steinhauser-Andresen S et al (2011) Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: an in vitro study. J Orofac Orthop 72(4):261–278PubMedCrossRefGoogle Scholar
  13. 13.
    Fuhrmann R (1996) Three-dimensional interpretation of alveolar bone dehiscences. An anatomical-radiological study–Part I. J Orofac Orthop 57(2):62–74PubMedCrossRefGoogle Scholar
  14. 14.
    Fuhrmann R (1996) Three-dimensional interpretation of labiolingual bone width of the lower incisors. Part II. J Orofac Orthop 57(3):168–185PubMedCrossRefGoogle Scholar
  15. 15.
    Fuhrmann R (1996) Three-dimensional interpretation of periodontal lesions and remodeling during orthodontic treatment. Part III. J Orofac Orthop 57(4):224–237PubMedCrossRefGoogle Scholar
  16. 16.
    Fuhrmann R, Wehrbein H, Diedrich P (1993) Dreidimensionale computertomographische Darstellung des bezahnten Alveolarkamms. Fortschr Kieferorthop 54(2):91–100PubMedCrossRefGoogle Scholar
  17. 17.
    Hofmann E, Medelnik J, Fink M et al (2013) Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison–an in vitro study. Eur J Orthod 35(3):286–294PubMedCrossRefGoogle Scholar
  18. 18.
    Hofmann E, Medelnik J, Keller T et al (2011) Measuring mesiodistal width of impacted maxillary canines: CT-assisted determination. J Orofac Orthop 72(1):33–44PubMedCrossRefGoogle Scholar
  19. 19.
    Hofmann E, Rodich M, Hirschfelder U (2011) The topography of displaced canines: a 3D-CT study. J Orofac Orthop 72 (4):247–252, 254–260Google Scholar
  20. 20.
    Hofmann E, Schmid M, Sedlmair M et al (2014) Comparative study of image quality and radiation dose of cone beam and low-dose multislice computed tomography–an in vitro investigation. Clin Oral Invest 18(1):301–311CrossRefGoogle Scholar
  21. 21.
    Plooij JM, Maal TJ, Haers P et al (2011) Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. Int J Oral Maxillofac Surg 40(4):341–352PubMedCrossRefGoogle Scholar
  22. 22.
    Swennen GR, Mollemans W, De Clercq C et al (2009) A cone-beam computed tomography triple scan procedure to obtain a three-dimensional augmented virtual skull model appropriate for orthognathic surgery planning. J Craniofac Surg 20(2):297–307PubMedCrossRefGoogle Scholar
  23. 23.
    Kyriakou Y, Kolditz D, Langner O et al (2011) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 183(2):144–153PubMedCrossRefGoogle Scholar
  24. 24.
    Duttenhoefer F, Mertens ME, Vizkelety J et al (2015) Magnetic resonance imaging in zirconia-based dental implantology. Clin Oral Implants Res 26(10):1195–1202. doi:  10.1111/clr.12430 PubMedCrossRefGoogle Scholar
  25. 25.
    Hopfgartner AJ, Tymofiyeva O, Ehses P et al (2013) Dynamic MRI of the TMJ under physical load. Dento Maxillo Fac Radiol 42(9):20120436CrossRefGoogle Scholar
  26. 26.
    Hovener JB, Zwick S, Leupold J et al (2012) Dental MRI: imaging of soft and solid components without ionizing radiation. J Magn Reson Imaging JMRI 36(4):841–846PubMedCrossRefGoogle Scholar
  27. 27.
    Tymofiyeva O, Boldt J, Rottner K et al (2009) High-resolution 3D magnetic resonance imaging and quantification of carious lesions and dental pulp in vivo. Magma 22(6):365–374PubMedCrossRefGoogle Scholar
  28. 28.
    Tymofiyeva O, Rottner K, Gareis D et al (2008) In vivo MRI-based dental impression using an intraoral RF receiver coil. Concepts Magn Reson Part B Magn Reson Eng 33B(4):244–251CrossRefGoogle Scholar
  29. 29.
    Tymofiyeva O, Proff PC, Rottner K et al (2013) Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg 71(7):1159–1169CrossRefGoogle Scholar
  30. 30.
    Tymofiyeva O, Rottner K, Jakob PM et al (2010) Three-dimensional localization of impacted teeth using magnetic resonance imaging. Clin Oral Invest 14(2):169–176CrossRefGoogle Scholar
  31. 31.
    Tymofiyeva O, Schmid F, von Kienlin M et al (2011) On precise localization of boundaries between extended uniform objects in MRI: tooth imaging as an example. MAGMA 24(1):19–28PubMedCrossRefGoogle Scholar
  32. 32.
    Tymofiyeva O, Vaegler S, Rottner K et al (2013) Influence of dental materials on dental MRI. Dento Maxillo Fac Radiol 42(6):20120271CrossRefGoogle Scholar
  33. 33.
    Katti G, Ara SA, Shireen A (2011) Magnetic resonance imaging (MRI)—A review. Int J Dent Clin 3(1):65Google Scholar
  34. 34.
    Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer Science & Business MediaGoogle Scholar
  35. 35.
    Bretz F, Hothorn T, Westfall P (2010) Multiple comparisons using R. CRC Press, Boca RatonCrossRefGoogle Scholar
  36. 36.
    Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363. doi: 10.1002/bimj.200810425 PubMedCrossRefGoogle Scholar
  37. 37.
    Hothorn T, Bretz F, Westfall P et al (2015) Package ‘multcomp’. https://cran.r-project.org/web/packages/multcomp/multcomp.pdf
  38. 38.
    Team RC (2015) R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2013Google Scholar
  39. 39.
    Danforth RA, Dus I, Mah J (2003) 3-D volume imaging for dentistry: a new dimension. J Calif Dent Assoc 31(11):817–823PubMedGoogle Scholar
  40. 40.
    Holberg C, Steinhauser S, Geis P et al (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66(6):434–444PubMedCrossRefGoogle Scholar
  41. 41.
    Vannier MW (2003) Craniofacial computed tomography scanning: technology, applications and future trends. Orthod Craniofac Res 6(Suppl 1):23–30 discussion 179–182 PubMedCrossRefGoogle Scholar
  42. 42.
    Douglas WR (1972) Of pigs and men and research: a review of applications and analogies of the pig, sus scrofa, in human medical research. Space Life Sci 3(3):226–234PubMedGoogle Scholar
  43. 43.
    Appel TR, Baumann MA (2002) Solid-state nuclear magnetic resonance microscopy demonstrating human dental anatomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(2):256–261PubMedCrossRefGoogle Scholar
  44. 44.
    Idiyatullin D, Corum C, Moeller S et al (2011) Dental magnetic resonance imaging: making the invisible visible. J Endod 37(6):745–752PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Weiger M, Pruessmann KP, Bracher AK et al (2012) High-resolution ZTE imaging of human teeth. NMR Biomed 25(10):1144–1151PubMedCrossRefGoogle Scholar
  46. 46.
    Weiger M, Pruessmann KP, Hennel F (2011) MRI with zero echo time: hard versus sweep pulse excitation. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 66(2):379–389CrossRefGoogle Scholar
  47. 47.
    Bracher AK, Hofmann C, Bornstedt A et al (2013) Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dento Maxillo Fac Radiol 42(6):20120321CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Andreas Detterbeck
    • 1
    Email author
  • Michael Hofmeister
    • 1
  • Elisabeth Hofmann
    • 1
  • Daniel Haddad
    • 3
  • Daniel Weber
    • 3
  • Astrid Hölzing
    • 2
  • Simon Zabler
    • 2
  • Matthias Schmid
    • 4
  • Karl-Heinz Hiller
    • 3
  • Peter Jakob
    • 3
  • Jens Engel
    • 2
  • Jochen Hiller
    • 5
  • Ursula Hirschfelder
    • 1
  1. 1.Department of Orthodontics and Orofacial OrthopedicsUniversity of Erlangen Medical SchoolErlangenGermany
  2. 2.Fraunhofer Institute for Integrated Circuits (IIS), Project Group NanoCT SystemsWürzburgGermany
  3. 3.Research Center for Magnetic Resonance Bavaria (MRB)WürzburgGermany
  4. 4.Institute for Medical Biometry, Informatics and Epidemiology (IMBIE)University of BonnBonnGermany
  5. 5.Fraunhofer Institute for Integrated Circuits (IIS), Application Center for Computed Tomography in MetrologyDeggendorfGermany

Personalised recommendations