Skip to main content
Log in

Three-dimensional CT evaluation of oculoauriculovertebral spectrum patients use of Katsumata’s asymmetry index

Dreidimenstionale computertomographische Evaluierung von OVAS(Okulo-Aurikulo-Vertebrales Spektrum)-Patienten Einsatz des Asymmetrie-Index nach Katsumata

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

To evaluate patients with oculoauriculovertebral spectrum (OAVS) malformations based on Katsumata’s asymmetry index and to assess the usefulness of the scores thus obtained in identifying degrees and sites of asymmetry.

Methods

Multislice spiral computed tomography (MSCT) datasets of 8 female and 12 male OAVS patients aged 5.7–23.9 years were retrospectively analyzed. After three-dimensional reconstruction, central and bilateral anatomical landmarks were identified within a coordinate system defined by the sella, nasion, and dens axis. MSCT datasets of 20 clinically symmetrical patients were used to define the cutoff values for asymmetry. Based on the mean asymmetry scores and their standard deviations, the severities and sites of asymmetry were evaluated and processed for visual presentation in charts.

Results

Both interrater (ICC 0.7070–0.9984) and intrarater (FVU 0.0014–0.2930) reliability was very high. The calculated asymmetry scores added up to mean values and standard deviations that were higher by factors of around 1.5–2.5 than reported by Katsumata et al. More anatomical landmarks were rated as asymmetric in OAVS patients showing unilateral agenesis of an external acoustic pore than in OAVS patients without such agenesis: in the former patients, statistically significant asymmetries compared to the control group were present at the L1M (coronal pulp cavity of the lower first molar), CoP (coronoid process), and Co (condylion superius) landmarks, whereas the latter group showed such significant asymmetries at the CoP and Co landmarks. Likewise, more patients with unilateral agenesis showed asymmetries at the level of the maxilla. Highly variable severities of asymmetry were found in both subgroups of OAVS patients.

Conclusion

Katsumata’s asymmetry index can yield well-structured and illustrative views of landmark distribution, thus, suitably allowing for qualitative asymmetry evaluation of OAVS cases and identification of the skeletal regions involved.

Zusammenfassung

Zielsetzung

Ziele der vorliegenden Arbeit waren die Untersuchung von Patienten mit einer Fehlbildung des Okulo-Aurikulo-Vertebralen Spektrums (OAVS) anhand des Asymmetrie-Index nach Katsumata sowie die Evaluierung des Grades und der Lokalisation der Asymmetrie.

Methode

Aus vorhandenen MSCT (Mehrschicht-Spiral-Computertomographie)-Datensätzen wurden retrospektiv 20 Datensätze von Patienten mit OAVS (8 weiblich, 12 männlich, Range 5,7–23,9 Jahre) ausgewählt. Nach dreidimensionaler Rekonstruktion der Datensätze wurde die Position uni- und bilateraler Referenzpunkte innerhalb eines durch Sella, Nasion und Dens axis definierten Koordinatensystems ermittelt. Die Berechnung des Asymmetrie-Index nach Katsumata wurde anhand von MSCT-Datensätzen klinisch symmetrischer Patienten (n = 20) durchgeführt. Anschließend wurden die Asymmetrie-Indizes berechnet und der Grad sowie die Lokalisation der Asymmetrie rechnerisch und graphisch bestimmt. Weiterhin wurden Intra- und Interuntersucherfehler ermittelt

Ergebnisse

Die Inter- und Intrarater-Reliabilität war sehr hoch (ICC: 0,7070–0,9984 FVU: 0,0014–0,2930). Die Mittelwerte und Standardabweichungen für die Berechnung des Asymmetrie-Index waren je nach anatomischen Punkt etwa 1,5- bis 2,5-mal höher als in der Untersuchung von Katsumata. Bei Patienten, bei denen nur ein Porus acusticus externus angelegt war, wurden mehr Punkte als asymmetrisch bzw. markant asymmetrisch beurteilt (Signifikanzen bei L1M, CoP und Co) als bei Patienten mit 2 knöchernen Gehörgängen (Signifikanzen bei CoP und Co). Zudem wiesen Patienten mit nur einem Porus häufiger Asymmetrien im Bereich der Maxilla auf. Der Asymmetriegrad innerhalb der beiden Patientengruppen war sehr variabel.

Schlussfolgerung

Aufgrund der übersichtlichen graphischen Darstellung relevanter anatomischer Punkte eignet sich der Asymmetrie-Index nach Katsumata für die qualitative Beurteilung einer Asymmetrie sowie die Lokalisation der betroffenen skelettalen Regionen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baumrind S, Frantz RC (1971) The reliability of head film measurements. 1. Landmark identification. Am J Orthod 60:111–127

    Article  PubMed  Google Scholar 

  2. Bennun RD, Mulliken JB, Kaban LB, Murray JE (1985) Microtia: a microform of hemifacial microsomia. Plast Reconstr Surg 67(6):859–865

    Article  Google Scholar 

  3. Cohen MM, Rollnick BR, Kaye CI (1989) Oculoauriculovertebral spectrum: an updated critique. Cleft Palate J 26(4):276–286

    PubMed  Google Scholar 

  4. Converse JM, Coccaro PJ, Becker M, Wood-Smith D (1973) On hemifacial microsomia: the first and second branchial arch syndrom. Plast Reconstr Surg 51:268–279

    Article  PubMed  Google Scholar 

  5. Converse JM, Coccaro PJ, Becker M, Wood-Smith D (1979) Clinical aspects of craniofacial microsomia. In: Converse JM, McCarthy JG, Wood-Smith D (eds) Symposium on diagnosis and treatment of craniofacial anomalies. vol. 20. St. Louis, Mosby, pp 461–475

  6. David DJ, Mahatumarat C, Cooter RD (1987) Hemifacial microsomia: a multisystem classification. Plast Reconstr Surg 80:525–533

    Article  PubMed  Google Scholar 

  7. Ewart-Toland A, Yankowitz J, Winder A et al (2000) Oculoauriculovertebral abnormalities in children of diabetic mothers. Am J Med Genet 90(4):303–309

    Article  PubMed  Google Scholar 

  8. Goldenhaar M (1952) Associations malformatives de l’oeil et de l’oreille, en particulier le syndrome dermoide epibulbaire-appendices auriculaires-fistula auris congenita et ses relations avec la dysostose mandibulo-faciale. J Genet Hum 1:243–282

    Google Scholar 

  9. Gorlin RJ, Jue KL, Jacobsen U, Goldschmidt E (1963) Oculoauriculovertebral dysplasia. J Pediatr 63:991–999

    Article  PubMed  Google Scholar 

  10. Gorlin RJ, Cohen MM, Levin LS (1990) Syndromes of the head and neck. Oxford University press, 641–649

  11. Gorlin RJ (2001) Asymmetry. Am J Med Genet 101(4):290–291

    Article  PubMed  Google Scholar 

  12. Grabb WC (1965) The first and second branchial arch syndrome. Plast Reconstr Surg 36(5):485–508

    Article  PubMed  Google Scholar 

  13. Gustavson EE, Chen H (1985) Goldenhar syndrome, anterior encephalocele, and aqueductal stenosis following fetal primidone exposure. Teratology 32(1):13–17

    Article  PubMed  Google Scholar 

  14. Hanke S, Hirschfelder U, Keller T, Hofmann E (2012) 3D CT based rating of unilateral impacted canines. J Craniomaxillofac Surg 40(8):e268–e276. doi:10.1016/j.jcms.2011.12.005 Epub 2012 Jan 28

    Article  PubMed  Google Scholar 

  15. Harvold EP, Vargervik K, Chierici G (1983) Treatment of Hemifacial Microsomia. Alan R Liss, New York

    Google Scholar 

  16. Haßfeld S, Kunkel M, Ulrich H et al (2008) Stellungsnahme: Indikationen zur Schnittbilddiagnostik in der Mund-, Kiefer- und Gesichtschirurgie (CT/DVT). Der MKG-Chirurg 1:148–151

    Article  Google Scholar 

  17. Hirschfelder U (1989) Dreidimensionale computertomographische Analyse von Kiefer-,Gesichts-und Schädelanomalien. Die klinische Anwendung der CT in der Kieferorthopädie. Zahnmedizinische Habilitation, Erlangen

  18. Hirschfelder U, Piechot E, Schulte M, Leher A (2004) Abnormalities of the TMJ and the musculature in the oculo-auriculo-vertebral spectrum (OAV). A CT study. J Orofac Orthop 65(3):204–216

    Article  PubMed  Google Scholar 

  19. Hirschfelder U (2008) Stellungnahme: Radiologische 3D-Diagnostik in der Kieferorthopädie (CT/DVT)

  20. Hofmann E, Rodich M, Hirschfelder U (2011) The topography of displaced canines - a 3D-CT study. J Orofac Orthop 4:247–260. doi:10.1007/s00056-011-0029-0

    Article  Google Scholar 

  21. Hofmann E, Medelnik J, Fink M, Lell M, Hirschfelder U (2011) Three-dimensional volume tomographic study of the imaging accuracy of impacted teeth: MSCT and CBCT comparison-an in vitro study. Eur J Orthod. doi:10.1093/ejo/cjr030

    PubMed  Google Scholar 

  22. Jongbloet PH (1987) Goldenhar syndrome and overlapping dysplasias, in vitro fertilisation and ovopathy. J Med Genet 24(10):616–620

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kalender WA (1994) Principles and applications of spiral CT. Nucl Med Biol 21:693–699

    Article  PubMed  Google Scholar 

  24. Kalender WA (2005) Computed tomography. Fundamentals, system technology, image quality, applications. Erlangen: Publicis

  25. Katsumata A, Fujishita M, Maeda M et al (2005) 3D-CT evaluation of facial asymmetry. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99(2):212–220

    Article  PubMed  Google Scholar 

  26. Kyriakou Y, Kolditz D, Lagner O et al. (2010) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. Fortschr Röntgenstr. doi:http://dx.doi.org/10.1055/s-0029-1245709

  27. Lammer EJ, Cordero JF (1985) Teratogenicity of anticonvulsant drugs. Am J Med Genet 22(3):641–645

    Article  PubMed  Google Scholar 

  28. Lauritzen C, Munro IR, Ross RB (1985) Classification and treatment of hemifacial microsomia. Scand J Plast Reconstr Surg 19:33–39

    Article  PubMed  Google Scholar 

  29. Llano-Rivas I, Gonzalez-del Angel A, del Castillo V, Reyes R, Carnevale A (1999) Microtia: a clinical and genetic study at the National Insitute of Pediatrics in Mexico City. Arch Med Res 30(2):120–124

    Article  PubMed  Google Scholar 

  30. Maeda M, Katsumata A, Ariji Y et al (2006) 3D-CT evaluation of facial asymmetry in patients with maxillofacial deformities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(3):382–390

    Article  PubMed  Google Scholar 

  31. Marsh JL, Baca D, Vannier MW (1989) Facial musculoskeletal asymmetry in hemifacial microsomia. Cleft Palate J 26(4):292–302

    PubMed  Google Scholar 

  32. Medelnik J, Hertrich K, Steinhäuser-Andresen S et al (2011) Accuracy of anatomical landmark identification using different CBCT- and MSCT-based 3D images: an in vitro study. J Orofac Orthop 72(4):261–278. doi:10.10.1007/s00056-011-0032-5

    Article  PubMed  Google Scholar 

  33. Miehlke A, Partsch CJ (1963) Ear abnormality, facial and abducent nerve paralysis as a syndrome of thalidomide injury. Arch Ohren Nasen Kehlkopfheilkd 181:154–174

    Article  PubMed  Google Scholar 

  34. Periago D, Scarfe W, Moshiri M et al (2008) Linear accuracy and reliability of cone beam derived 3-dimensional images constructed using an orthodontic volumetric rendering program. Angle Orthod 78:387–395

    Article  PubMed  Google Scholar 

  35. Pruzansky S (1969) Not all dwarfed mandibles are alike. Birth defects 2:120–129

    Google Scholar 

  36. Rollnick BR, Kaye CI, Nagatoshi K et al (1987) Oculoauriculovertebral dysplasia and variants: phenotypic characteristics of 294 patients. Am J Med Genet 26(2):361–375

    Article  PubMed  Google Scholar 

  37. Schulze R (2013) s2k-Leitlinie—Dentale digitale Volumentomographie. doi: http://www.dgzmk.de/uploads/tx_szdgzmkdocuments/083-005l_S2k_Dentale_Volumentomographie_2013-10.pdf

  38. Shrout P, Fleiss JL (1979) Intraclass correlation: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  PubMed  Google Scholar 

  39. Swennen GR, Schutyser F (2006) Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 130(3):410–416

    Article  PubMed  Google Scholar 

  40. Titiz I, Laubinger M, Keller T et al (2012) Precision of landmarks—a CT study. Eur J Orthod 34(3):276–286. doi:10.1093/ejo/cjq190

    Article  PubMed  Google Scholar 

  41. Tuncer BB, Atac MS, Yuksel S (2009) A case report comparing 3-D evaluation in the diagnosis and treatment planning of hemimandibular hyperplasia with conventional radiography. J Craniomaxillofac Surg 37(6):312–319

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the German Orthodontic Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Hofmann.

Ethics declarations

Conflict of interest

E. Hofmann, M. Schmid, S. Steinhäuser-Andresen, and U. Hirschfelder state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Additional information

Dr. Elisabeth Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, E., Schmid, M., Steinhäuser-Andresen, S. et al. Three-dimensional CT evaluation of oculoauriculovertebral spectrum patients use of Katsumata’s asymmetry index. J Orofac Orthop 77, 176–184 (2016). https://doi.org/10.1007/s00056-016-0022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0022-8

Keywords

Stichwort

Navigation