Skip to main content
Log in

Effect of sex steroids on bone formation in an orthopedically expanded suture in rats

An immunohistochemical and computed tomography study

Effekte von Sexualhormonen auf die Knochenneubildung in einer orthopadisch erweiterten Gaumennaht bei Ratten

Eine immunhistochemische und computertomographische Untersuchung

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The purpose of this work was to evaluate the effects of sex steroids on bone formation in response to midpalatal suture expansion by means of histological and immunohistochemical examinations and computed tomography (CT).

Materials and methods

A total of 32 male and 32 female 12-week-old Wistar rats were divided into four groups per gender. Testosterone was administered to the castrated experimental male rats, estrogen to castrated experimental female rats. Saline solution was given subcutaneously to the male and female control, sham, and castration groups during expansion and retention periods, which lasted 7 and 5 days, respectively. The expansion amount was measured with a digital caliper. The density of the new bone in the expansion area was measured via CT.

Results

Histological and CT evaluation revealed that the number of osteoblasts and density of the new bone was higher in male and female experimental groups than in all the other groups. When scores of staining intensity were compared, the experimental groups demonstrated statistically significant greater immunoreactivity in the osteoblasts compared to castrated-only groups. Bone density was higher in the female experimental group than in the others, and higher in the male experimental group than in the others. Expansion amounts in the castrated groups were higher than in the others (p < 0.05).

Conclusion

Raising the levels of sex steroids in rats revealed positive effects on bone formation in the midpalatal suture in response to expansion. Increased sex steroid levels can reduce the time needed for retention.

Zusammenfassung

Ziel

Mit histologischen, immunhistochemischen und computertomographischen Untersuchungen sollten die Effekte von Sexualhormonen auf die reaktive Knochenneubildung nach Gaumennahterweiterung evaluiert werden.

Material und Methoden

Insgesamt 64 12 Wochen alte Wistar-Ratten, 32 männliche und 32 weibliche, wurden pro Geschlecht in 4 Gruppen zu je 8 Tieren eingeteilt; die kastrierten männlichen Versuchstiere erhielten Testosteron, die kastrierten weiblichen Versuchstiere Östrogen. Die männlichen und weiblichen Kontroll- und Placebo-Tiere sowie kastrierte Kontroll-Tiere erhielten während der 7 bzw. 5 Tage dauernden Expansions-und Retentionsphaseneine NaCl-Lösung s.c.. Das Ausmaß der Erweiterung wurde mit einer digitalen Schieblehre gemessen, die Dichte des neu entstandenen Knochengewebes im Bereich der Erweiterung mit Computertomographien.

Ergebnisse

Die histologischen wie radiologischen Auswertungen ergaben, dass die Anzahl der Osteoblasten und die Dichte des neu gebildeten Knochens in beiden Versuchsgruppen höher waren als in allen anderen Gruppen. Beim Vergleich der Scores der Anfärbeintensität zeigte sich in den Versuchsgruppen eine statistisch signifikant stärkere osteoblastäre Immunreaktivität als in den Gruppen der kastrierten Tiere. Die Knochendichte war in der weiblichen Versuchsgruppe höher als in den anderen, ebenso verhielt es sich bei der Versuchsgruppe mit männlichen Ratten. Die Erweiterung war in den Gruppen der kastrierten Kontroll- Tiere ausgeprägter (p < 0,05) als in den anderen Gruppen.

Schlussfolgerung

Zusätzlich gegebene Sexualsteroide führten im Rattenmodell zu positiven Effekten auf die reaktive Knochenbildung nach Gaumennahterweiterung. Erhöhte Sexualhormonkonzentrationen können die für die Retention benötigte Zeitspanne verkürzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Basciftci FA et al (2002) Does the timing and method of rapid maxillary expansion have an effect on the changes in nasal dimensions? Angle Orthod 72:118–123

    PubMed  Google Scholar 

  2. Behre HM et al (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82:2386–2390

    Article  PubMed  Google Scholar 

  3. Bishara SE, Staley RN (1987) Maxillary expansion: clinical implications. Am J Orthod Dentofac Orthop 91:3–14

    Article  Google Scholar 

  4. Bjork A, Helm S (1967) Prediction of the age of maximum puberal growth in body height. Angle Orthod 37:134–143

    PubMed  Google Scholar 

  5. da Paz LH et al (2001) Effect of 17beta-estradiol or alendronate on the bone densitometry, bone histomorphometry and bone metabolism of ovariectomized rats. Braz J Med Biol Res 34:1015–1022

    PubMed  Google Scholar 

  6. Einhorn TA (1992) Bone strength: the bottom line. Calcif Tissue Int 51:333–339

    Article  PubMed  Google Scholar 

  7. Franchi L, Baccetti T, McNamara JA Jr (2000) Mandibular growth as related to cervical vertebral maturation and body height. Am J Orthod Dentofac Orthop 118:335–340

    Article  Google Scholar 

  8. Gupta DA, Attanasio A, Raaf S (1974) Plasma estrogen and androgen concentrations in children during adolescence. J Clin Endocrinol Metab 40:636–643

    Article  Google Scholar 

  9. Haas AJ (1970) Palatal expansion: just the beginning of dentofacial orthopedics. Am J Orthod 57:219–255

    Article  PubMed  Google Scholar 

  10. Handelman CS et al (2000) Nonsurgical rapid maxillary expansion in adults: report on 47 cases using the Haas expander. Angle Orthod 70:129–144

    PubMed  Google Scholar 

  11. Haruyama N et al (2002) Estrous-cycle-dependent variation in orthodontic tooth movement. J Dent Res 81:406–410

    Article  PubMed  Google Scholar 

  12. Heybeli N (2001) Testosteronun kırık iyileşmesine etkisinin orşiektomize ratlarda oluşturulan femur kırık modelinde mekanik yöntemlerle incelenmesi. Hacet Ortop Derg 11(2):71–74

  13. http://en.wikipedia.org/wiki/Osteocalcin. Accessed Jan 2015

  14. http://en.wikipedia.org/wiki/Osteonectin. Accessed Jan 2015

  15. http://en.wikipedia.org/wiki/Transforming_growth_factor. Accessed Jan 2015

  16. http://en.wikipedia.org/wiki/Vascular_endothelial_growth_factor. Accessed Jan 2015

  17. https://www.lifetechnologies.com/tr/en/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-immunohistochemistry.html. Accessed Jan 2015

  18. Hunter CJ (1966) The correlation of facial growth with body height and skeletal maturation at adolescence. Angle Orthod 36:44–54

    PubMed  Google Scholar 

  19. Khosla S et al (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    PubMed  Google Scholar 

  20. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030 (xi)

    Article  Google Scholar 

  21. Lamparski D (1972) Skeletal age assessment utilizing cervical vertebrae. The University of Pittsburgh, Pittsburgh

    Google Scholar 

  22. Lang TF et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108

    Article  PubMed  Google Scholar 

  23. Lee NK et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lewis AB, Garn SG (1960) The relationship between tooth formation and other maturational factors. Angle Orthod 30:70–77

    Google Scholar 

  25. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  PubMed  PubMed Central  Google Scholar 

  26. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  PubMed  PubMed Central  Google Scholar 

  27. Melsen B (1972) A histological study of the influence of sutural morphology and skeletal maturation on rapid palatal expansion in children. Trans Eur Orthod Soc 499–507

  28. Melsen B (1975) Palatal growth studied on human autopsy material. A histologic microradiographic study. Am J Orthod 68:42–54

    Article  PubMed  Google Scholar 

  29. Melsen B, Melsen F (1982) The postnatal development of the palatomaxillary region studied on human autopsy material. Am J Orthod 82:329–342

    Article  PubMed  Google Scholar 

  30. Norton MR, Gamble C (2001) Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res 12:79–84

    Article  PubMed  Google Scholar 

  31. Ozturk F et al (2011) Effects of bisphosphonates on sutural bone formation and relapse: a histologic and immunohistochemical study. Am J Orthod Dentofac Orthop 140:e31–e41

    Article  Google Scholar 

  32. Proffit W (2007) Contemporary orthodontics, 4th edn. Mosby Elsevier, St. Louis, Missouri, USA, pp 495–576

  33. Styne DM, Grumbach MM (2003) Puberty: ontogeny, neuroendocrinology, physiology, and disorders. In: Larsen PR (ed) Williams textbook of endocrinology. Saunders, St. Louis, pp 1115–1200

    Google Scholar 

  34. Tanner J (1969) Growth at adolescence, 2nd edn. Blackwell, Oxford 1969

    Google Scholar 

  35. Taylor CR, Levenson RM (2006) Quantification of immunohistochemistry—issues concerning methods, utility and semiquantitative assessment II. Histopathology 49:411–424

    Article  PubMed  Google Scholar 

  36. Turner RT, Hannon KS, Demers LM, Buchanan J, Bell NH et al (1989) Differential effects of gonadal function on bone histomorphometry in male and female rats. J Bone Miner Res 4:557–563

    Article  PubMed  Google Scholar 

  37. Uysal T et al (2011) Effect of vitamin C on bone formation in the expanded inter-premaxillary suture. Early bone changes. J Orofac Orthop 72:290–300

    Article  PubMed  Google Scholar 

  38. van den Beld AW et al (2000) Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 85:3276–3282

    PubMed  Google Scholar 

  39. Vanderschueren D, Bouillon R (1995) Androgens and bone. Calcif Tissue Int 56:341–346

    Article  PubMed  Google Scholar 

  40. Wertz R, Dreskin M (1977) Midpalatal suture opening: a normative study. Am J Orthod 71:367–381

    Article  PubMed  Google Scholar 

  41. Wertz RA (1970) Skeletal and dental changes accompanying rapid midpalatal suture opening. Am J Orthod 58:41–66

    Article  PubMed  Google Scholar 

  42. Wronski TJ et al (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45:360–366

    Article  PubMed  Google Scholar 

  43. Yamashiro T, Takano-Yamamoto T (2001) Influences of ovariectomy on experimental tooth movement in the rat. J Dent Res 80:1858–1861

    Article  PubMed  Google Scholar 

  44. Zimring JF, Isaacson RJ (1965) Forces produced by rapid maxillary expansion. 3. Forces Present during retention. Angle Orthod 35:178–186

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Birlik.

Ethics declarations

Conflict of interest

M. Birlik, H. Babacan, R. Cevit, and B. Gürler state that there are no conflicts of interest.

All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birlik, M., Babacan, H., Cevit, R. et al. Effect of sex steroids on bone formation in an orthopedically expanded suture in rats. J Orofac Orthop 77, 94–103 (2016). https://doi.org/10.1007/s00056-016-0021-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0021-9

Keywords

Schlüsselwörter

Navigation