Skip to main content
Log in

Different pulse modes of Er:YAG laser irradiation: effects on bond strength achieved with self-etching primers

Er:YAG-Laser-Bestrahlung mit unterschiedlichen Pulsmodi Effekte auf die Haftfestigkeit beim Kleben mit selbstätzenden Primern

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to compare the effects of different pulse modes of Er:YAG laser on shear bond strength (SBS) of orthodontic brackets bonded with self-etching primers (SEP) and phosphoric acid etching.

Materials and methods

A total of 120 human mandibular third molars were randomly assigned to 3 groups of 40 specimens depending on the bonding procedure to be used. The groups were divided into two subgroups according to the pulse mode of the erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation as medium-short pulse (MSP) mode and quantum-square pulse (QSP) mode at 120 mJ, 10 Hz, 1.2 W. In each subgroup, the mesio- or distobuccal tooth surfaces were randomly assigned as experimental or control sides. After surface preparation with different modes of Er:YAG laser on experimental side, whole buccal tooth surfaces were treated with phosphoric acid etching or two different SEPs. Then metallic brackets were bonded with Transbond XT (3 M Unitek, Monrovia, CA, USA) or Kurasper F (Kuraray, Okayama, Japan). SBS values and the amount of adhesive remaining on the tooth after debonding were assessed. One-way analysis of variance (ANOVA) was used to evaluate the changes in mean SBS between groups resulting from laser etching, followed by post hoc test of Tukey.

Results

There were statistically significant differences between the experimental and control sides of all groups (p < 0.05).

Conclusion

Laser etching with QSP and MSP modes increases the SBS of metallic brackets and Er:YAG laser irradiation with QSP mode increases the SBS of SEPs.

Zusammenfassung

Ziel

In der Studie sollten die Effekte unterschiedlicher Er:YAG(“erbium-doped yttrium aluminum garnet”)-Laser-Pulsmodi auf die Scherhaftfestigkeit (“shear bond strength”, SBS) kieferorthopädischer Brackets untersucht werden, nach dem Kleben unter Verwendung selbstätzender Primer (“self-etching primers”, SEP) und Ätzung mit Phosphorsäure.

Material und Methoden

Insgesamt 120 humane dritte Molaren (Mandibula) wurden in 3 Gruppen à 40 Proben randomisiert, je nach verwendetem Klebe-Verfahren. Diese Gruppen wurden weiter unterteilt in jeweils 2 Untergruppen, je nach dem eingesetzten Pulsmodus des Er:YAGLasers: MSP(medium-short pulse)- bzw. QSP(quantum-square pulse)-Modus, 120 mJ, 10 Hz, 1,2 W. In jeder Untergruppe wurden die mesio- bzw. distobukkalen Zahnoberflächen randomisiert als experimentelle Seiten bzw. Kontrollseiten gewählt. Nach Oberflächenvorbereitung mit unterschiedlichen Er:YAG-Laser-Pulsmodi auf der experimentellen Seite wurden die gesamten bukkalen Zahnoberflächen mit Phosphorsäure oder mit 2 unterschiedlichen SEPs behandelt. Anschließend wurden Metall-Brackets mit Transbond XT (3 M Unitek, Monrovia, CA, USA) oder Kurasper F (Kuraray, Okayama, Japan) aufgebracht. Bestimmt wurden SBS-Werte und die Adhäsivmenge, die nach Debonding auf dem Zahn verblieben war. Zur Evaluierung der durch Laserätzung entstandenen SBS-Veränderungen zwischen den Gruppen dienten der Ein-Wege-ANOVA(“analysis of variance”)-Test und der anschließend durgeführte Post-hoc-Text nach Tukey.

Ergebnisse

Zwischen den experimentellen Seiten und den Kontrollseiten aller Gruppen bestanden statistisch signifikante Unterschiede (p < 0,05).

Schlussfolgerung

Eine Laserätzung in den Modi QSP und MSP verstärkt die SBS bei Metall-Brackets, und eine Er:YAG-Laser-Bestrahlung im QSP-Modus verstärkt die SBS bei Verwendung von SEPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahrari F, Poosti M, Motahari P (2012) Enamel resistance to demineralization following Er: YAG laser etching for bonding orthodontic brackets. Dent Res J 9:472–477

    Google Scholar 

  2. Apel C, Meister J, Schmitt N et al (2002) Calcium solubility of dental enamel following sub-ablative Er:YAG and Er:YSGG laser irradiation in vitro. Lasers Surg Med 30:337–341

    Article  PubMed  Google Scholar 

  3. Apel C, Meister J, Ioana RS et al (2002) The ablation threshold of Er:YAG and Er:YSGG laser radiation in dental enamel. Lasers Med Sci 17:246–252

    Article  PubMed  Google Scholar 

  4. Arnold RW, Combe EC, Warford JH Jr (2002) Bonding of stainless steel brackets to enamel with a new self-etching primer. Am J Orthod Dentofacial Orthop 122:274–276

    Article  PubMed  Google Scholar 

  5. Basaran G, Ozer T, Berk N et al (2007) Etching enamel for orthodontics with an erbium, chromium:yttrium-scandium-gallium-garnet laser system. Angle Orthod 77:117–123

    Article  PubMed  Google Scholar 

  6. Berk N, Başaran G, Ozer T (2008) Comparison of sandblasting, laser irradiation, and conventional acid etching for orthodontic bonding of molar tubes. Eur J Orthod 30:183–189

    Article  PubMed  Google Scholar 

  7. Bishara SE, VonWald L, Laffoon JF et al (2001) Effect of a self-etch primer/adhesive on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop 119:621–624

    Article  PubMed  Google Scholar 

  8. Buyukyilmaz T, Usumez S, Karaman AI (2003) Effect of self-etching primers on bond strength-are they reliable? Angle Orthod 73:64–70

    PubMed  Google Scholar 

  9. Chimello-Sousa DT, de Souza AE, Chinelatti MA et al (2006) Influence of Er:YAG laser irradiation distance on the bond strength of a restorative system to enamel. J Dent 34:245–251

    Article  PubMed  Google Scholar 

  10. Choe DP, Kipnis V, Singer J et al (1992) The effectiveness of the 308-NM excimer laser for pretreatment of enamel surface: a comparative study of shear bond strength between laser irradiation and acid etching. Am J Orthod Dentofacial Orthop 102:488

    Google Scholar 

  11. Costa AR, Correr AB, Puppin-Rontani RM et al (2011) Effects of thermocycling and light source on the bond strength of metallic brackets to bovine teeth. Braz Dent J 22:486–489

    Article  PubMed  Google Scholar 

  12. Cozean C, Arcoria CJ, Pelagalli J et al (1997) Dentistry for the 21st century? Erbium:YAG laser for teeth. J Am Dent Assoc 128:1080–1087

    Article  PubMed  Google Scholar 

  13. Eliades T, Brantley W (2000) The inappropriateness of conventional orthodontic bond strength assessment protocols. Eur J Orthod 22:13–23

    Article  PubMed  Google Scholar 

  14. Faltermeier A, Behr M, Müssig D (2007) A comparative evaluation of bracket bonding with 1-, 2-, and 3-component adhesive systems. Am J Orthod Dentofacial Orthop 132:144 e1–5

    PubMed  Google Scholar 

  15. Finnema KJ, Özcan M, Post WJ et al (2010) In-vitro orthodontic bond strength testing: a systematic review and meta-analysis. Am J Orthod Dentofacial Orthop 137:615–622

    Article  PubMed  Google Scholar 

  16. Fox NA, McCabe J, Buckley J (1994) A critique of bond strength testing in orthodontics. J Orthod 21:33–43

    Article  Google Scholar 

  17. Fernandez L, Canut JA (1999) In vitro comparison of the retention capacity of new aesthetic brackets. Eur J Orthod 21:71–77

    Article  PubMed  Google Scholar 

  18. Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-microm wavelength region. Appl Opt 12:555–563

    Article  PubMed  Google Scholar 

  19. Hossain M, Nakamura Y, Kimura Y et al (2000) Caries-preventive effect of Er: YAG laser irradiation with or without water mist. J Clin Laser Med Surg 18:61–65

    PubMed  Google Scholar 

  20. Hossain M, Nakamura Y, Tamaki Y et al (2003) Atomic analysis and knoop hardness measurement of the cavity floor prepared by Er, Cr:YSGG laser irradiation in vitro. J Oral Rehabil 30:515–521

    Article  PubMed  Google Scholar 

  21. http://www.fotona.com/media/objave/priponke/brochurelightwalker_8_pages_v7_small.pdf

  22. Iijima M, Ito S, Yuasa T et al (2008) Bond strength comparison and scanning electron microscopic evaluation of three orthodontic bonding systems. Dent Mater J 27:392–399

    Article  PubMed  Google Scholar 

  23. J-f Liu, Liu Y, Stephen HC-Y (2006) Optimal Er: YAG laser energy for preventing enamel demineralization. J Dent 34:62–66

    Article  Google Scholar 

  24. Martinez-Insua A, Da Silva Dominguez L, Rivera FG et al (2000) Differences in bonding to acid-etched or Er:YAG-laser-treated enamel and dentin surfaces. J Prosthet Dent 84:280–288

    Article  PubMed  Google Scholar 

  25. O’Brien K, Watts D, Read M (1988) Residual debris and bond strength-Is there a relationship? Am J Orthod Dentofacial Orthop 94:222–230

    Article  PubMed  Google Scholar 

  26. Oliver R (1988) The effect of different methods of bracket removal onthe amount of residual adhesive. Am J Orthod Dentofacial Orthop 93:196–200

    Article  PubMed  Google Scholar 

  27. Ozer T, Basaran G, Berk N (2008) Laser etching of enamel for orthodontic bonding. Am J Orthod Dentofacial Orthop 134:193–197

    Article  PubMed  Google Scholar 

  28. Raji SH, Birang R, Majdzade F et al (2012) Evaluation of shear bond strength of orthodontic brackets bonded with Er-YAG laser etching. J Dent Res 9:288–293

    Google Scholar 

  29. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178

    Google Scholar 

  30. Sagir S, Usumez A, Ademci E, et al. (2013) Effect of enamel laser irradiation at different pulse settings on shear bond strength of orthodontic brackets. Angle Orthod. [Epub ahead of print]

  31. Scougall Vilchis RJ, Yamamoto S, Kitai N et al (2009) Shear bond strength of orthodontic brackets bonded with different self-etching adhesives. Am J Orthod Dentofacial Orthop 136:425–430

    Article  PubMed  Google Scholar 

  32. Sundfeld RH, de Oliveira CH, da Silva AM et al (2005) Resin tag length of one-step and self-etching adhesives bonded to unground enamel. Bull Tokyo Dent Coll 46:43–49

    Article  PubMed  Google Scholar 

  33. Tanji EY, Matsumoto K, Eduardo CP (1997) Scanning electron microscopic observations of dentin surface conditioned with the Er: YAG laser. Deuts Gesellschaft Laser Newsletter 8:6

    Google Scholar 

  34. Türköz Ç, Ulusoy Ç (2012) Evaluation of different enamel conditioning techniques for orthodontic bonding. Korean J Orthod 42:32–38

    Article  PubMed  PubMed Central  Google Scholar 

  35. Urabe H, Rossouw PE, Titley KC et al (1999) Combinations of etchants, composite resins, and bracket systems: an important choice in orthodontic bonding procedures. Angle Orthod 69:267–275

    PubMed  Google Scholar 

  36. Usumez S, Orhan M, Usumez A (2002) Laser etching of enamel for direct bonding with an Er, Cr:YSGG hydrokinetic laser system. Am J Orthod Dentofacial Orthop 122:649–656

    Article  PubMed  Google Scholar 

  37. Von Fraunhofer J, Allen D, Orbell G (1993) Laser etching of enamel for direct bonding. Angle Orthod 63:73–76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tancan Uysal.

Ethics declarations

Conflict of interest

M. Akin, I. Veli, E.A. Erdur, S. Aksakalli, and Tancan Uysal state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Additional information

Prof. Dr. Tancan Uysal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akin, M., Veli, I., Erdur, E.A. et al. Different pulse modes of Er:YAG laser irradiation: effects on bond strength achieved with self-etching primers. J Orofac Orthop 77, 151–159 (2016). https://doi.org/10.1007/s00056-016-0019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0019-3

Keywords

Schlüsselwörter

Navigation