Skip to main content
Log in

Shear bond strength of brackets on restorative materials

Comparison on various dental restorative materials using the universal primer Monobond® Plus

Scherhaftfestigkeit von kieferorthopädischen Metall- und Keramikbrackets

Vergleich auf unterschiedlichen zahnärztlichen Restaurationsmaterialien unter Verwendung des Universal-Primers Monobond® Plus

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The purpose of this work was to analyze surfaces consisting of different restorative materials for shear bond strength (SBS) and failure patterns of metal and ceramic brackets. Bonding involved the use of a universal primer (Monobond® Plus, Ivoclar Vivadent).

Materials and methods

Six restorative materials were tested, including one composite resin (Clearfil Majesty™ Posterior, Kuraray Noritake Dental), one glass–ceramic material (IPS Empress® Esthetic, Ivoclar Vivadent), one oxide-ceramic material (CORiTEC Zr transpa Disc, imes-icore), two base-metal alloys (remanium® star, Dentaurum; Colado® CC, Ivoclar Vivadent), and one palladium-based alloy (Callisto® 75 Pd, Ivoclar Vivadent). Bovine incisors served as controls. Both metal and ceramic brackets (discovery®/discovery® pearl; Dentaurum) were bonded to the restorative surfaces after sandblasting and pretreatment with Monobond® Plus. A setup modified from DIN 13990-2 was used for SBS testing and adhesive remnant index (ARI)-based analysis of failure patterns.

Results

The metal brackets showed the highest mean SBS values on the glass–ceramic material (68.61 N/mm2) and the composite resin (67.58 N/mm2) and the lowest mean SBS on one of the base-metal alloys (Colado® CC; 14.01 N/mm2). The ceramic brackets showed the highest mean SBS on the glass–ceramic material (63.36 N/mm2) and the lowest mean SBS on the palladium-based alloy (38.48 N/mm2). Significant differences between the metal and ceramic brackets were observed in terms of both SBS values and ARI scores (p < 0.05). Under both bracket types, fractures of the composite-resin and the glass–ceramic samples were observed upon debonding. Opaque restorative materials under metal brackets were found to involve undercuring of the adhesive.

Conclusions

Monobond® Plus succeeded in generating high bond strengths of both bracket types on all restorative surfaces. Given our observations of cohesive fracture (including cases of surface avulsion) of the composite-resin and the glass–ceramic samples, we recommend against using these material combinations in clinical practice.

Zusammenfassung

Ziel

Ziel unserer Untersuchung war es, die Scherhaftfestigkeit und das Abscherverhalten von Metall- und Keramikbrackets auf verschiedenen Restaurationsmaterialien unter Verwendung des Universal-Primers Monobond® Plus zu untersuchen.

Material und Methodik

Es wurden 6 verschiedene Restaurationsmaterialien untersucht: Komposit (Clearfil Majesty™ Posterior, Kuraray Noritake Dental, Hattersheim am Main, Deutschland), Glaskeramik (IPS Empress® Esthetic, Ivoclar Vivadent, Ellwangen, Deutschland), Oxidkeramik (CORiTEC Zr transpa Disc, imes-icore, Eiterfeld, Deutschland), 2 NEM(Nichtedelmetall)-Legierungen (remanium® star, Dentaurum, Ispringen, Deutschland und Colado® CC, Ivoclar Vivadent, Ellwangen, Deutschland) und eine Edelmetall-Palladium-Legierung (Callisto® 75 Pd, Ivoclar Vivadent, Ellwangen, Deutschland). Als Kontrollgruppe dienten extrahierte Rinderschneidezähne. Es wurden Metall- (discovery®) und Keramikbrackets (discovery® pearl, beide Dentaurum) verwendet. Die Oberflächen der Restaurationsmaterialien wurden sandgestrahlt und mit dem Universal-Primer Monobond® Plus (Ivoclar Vivadent, Liechtenstein) vorbehandelt. In Anlehnung an die DIN 13990-2 erfolgten die Scherhaftfestigkeitsprüfung und die Analyse des Bruchverhaltens (ARI).

Ergebnisse

Für Metallbrackets wurden die höchsten mittleren Scherhaftfestigkeitswerte bei den Gruppen Glaskeramik (68,61 N/mm²) und Komposit (67,58 N/mm²) erreicht. Der niedrigste Mittelwert zeigte sich hingegen bei der NEM-Legierung Colado® CC (14,01 N/mm²). Bei Betrachtung der Keramikbrackets ergaben sich die höchsten Mittelwerte bei der Gruppe Glaskeramik (63,36 N/mm²), der geringste Wert bei der Palladiumlegierung (38,48 N/mm²). Sowohl hinsichtlich der Scherfestigkeit als auch des ARI („adhesive remnant index“) konnten signifikante Unterschiede zwischen Metall- und Keramikbrackets (p < 0,05) festgestellt werden. Bei den Gruppen Komposit und Glaskeramik kam es während des Abschervorgangs bei beiden Brackettypen zur Fraktur der Probekörper. In Kombination mit Metallbrackets konnte bei lichtundurchlässigen Restaurationsmaterialien eine nur unvollständige Polymerisation des Adhäsivs nachgewiesen werden.

Schlussfolgerung

Der Universal-Primer Monobond® Plus konnte auf allen Restaurationsmaterialien für beide Brackettypen hohe Scherhaftfestigkeitswerte erzeugen. Bei der Komposit- und Glaskeramikgruppe kam es beim Schervorgang zur Fraktur der Probekörper und teilweise zu kohäsiven Ausrissen, weshalb der klinische Einsatz auf diesen Materialien nicht empfohlen werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abu Alhaija ES, Abu AlReesh IA, AlWahadni AM (2010) Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces. Eur J Orthod 32(3):274–280

    Article  PubMed  Google Scholar 

  2. Artun J, Bergland S (1984) Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am J Orthod 85(4):333–340

    Article  PubMed  Google Scholar 

  3. Attia A, Lehmann F, Kern M (2011) Influence of surface conditioning and cleaning methods on resin bonding to zirconia ceramic. Dental Mater 27(3):207–213

    Article  Google Scholar 

  4. Blakey R, Mah J (2010) Effects of surface conditioning on the shear bond strength of orthodontic brackets bonded to temporary polycarbonate crowns. Am J Orthod Dentofac Orthoped 138(1):72–78

    Article  Google Scholar 

  5. Bourke BM, Rock WP (1999) Factors affecting the shear bond strength of orthodontic brackets to porcelain. Br J Orthod 26(4):285–290

    Article  PubMed  Google Scholar 

  6. Bowen RL, Rodriguez MS (1962) Tensile strength and modulus of elasticity of tooth structure and several restorative materials. J Am Dent Assoc 64:378–387

    Article  PubMed  Google Scholar 

  7. Buonocore MG (1955) A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34(6):849–853

    Article  PubMed  Google Scholar 

  8. Cochran D, O’Keefe KL, Turner DT, Powers JM (1997) Bond strength of orthodontic composite cement to treated porcelain. Am J Orthod Dentofac Orthoped 111(3):297–300

    Article  Google Scholar 

  9. Daratsianos N, Musabegovic E, Reimann S, Gruner M, Jager A, Bourauel C (2013) The influence of cyclic shear fatigue on the bracket-adhesive-enamel complex: an in vitro study. Dental Mater 29(5):506–513

    Article  Google Scholar 

  10. DIN13990-2 (2009) Zahnheilkunde - Prüfverfahren für die Scherhaftfestigkeit von Adhäsiven für kieferorthopädische Befestigungselemente - Teil 2: Gesamtverbund Befestigungselement-Adhäsiv-Zahnschmelz. Beuth Verlag, Berlin

  11. Ferreira FG, Nouer DF, Silva NP, Garbui IU, Correr-Sobrinho L, Nouer PR (2013) Qualitative and quantitative evaluation of human dental enamel after bracket debonding: a noncontact three-dimensional optical profilometry analysis. Clinical oral investigations

  12. Gillis I, Redlich M (1998) The effect of different porcelain conditioning techniques on shear bond strength of stainless steel brackets. Am J Orthod Dentofac Orthoped 114(4):387–392

    Article  Google Scholar 

  13. Girish PV, Dinesh U, Bhat CS, Shetty PC (2012) Comparison of shear bond strength of metal brackets bonded to porcelain surface using different surface conditioning methods: an in vitro study. J Contemp Dent Pract 13(4):487–493

    Article  PubMed  Google Scholar 

  14. Jafarzadeh Kashi TS, Erfan M, Rakhshan V, Aghabaigi N, Tabatabaei FS (2011) An in vitro assessment of the effects of three surface treatments on repair bond strength of aged composites. Oper Dent 36(6):608–617

    Article  PubMed  Google Scholar 

  15. Jung MH, Shon WJ, Park YS, Chung SH (2013) Effects of silanation time on shear bond strength between a gold alloy surface and metal bracket. Kor J Orthod 43(3):127–133

    Article  Google Scholar 

  16. Kern M, Thompson VP (1994) Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent 71(5):453–461

    Article  PubMed  Google Scholar 

  17. Lee-Knight CT, Wylie SG, Major PW, Glover KE, Grace M (1997) Mechanical and electrothermal debonding: effect on ceramic veneers and dental pulp. Am J Orthod Dentofac Orthoped 112(3):263–270

    Article  Google Scholar 

  18. Lu R, Harcourt JK, Tyas MJ, Alexander B (1992) An investigation of the composite resin/porcelain interface. Aust Dent J 37(1):12–19

    Article  PubMed  Google Scholar 

  19. Pont HB, Ozcan M, Bagis B, Ren Y (2010) Loss of surface enamel after bracket debonding: an in vivo and ex vivo evaluation. Am J Orthod Dentofac Orthoped 138(4):387, e381–389 (discussion 387–389)

  20. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178

    Google Scholar 

  21. Ribeiro AA, de Morais AV, Brunetto DP, Ruellas AC, de Araujo MT (2013) Comparison of shear bond strength of orthodontics brackets on composite resin restorations with different surface treatments. Dental Press J Orthod 18(4):98–103

    Article  PubMed  Google Scholar 

  22. Ryf S, Flury S, Palaniappan S, Lussi A, van Meerbeek B, Zimmerli B (2012) Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur J Orthod 34(1):25–32

    Article  PubMed  Google Scholar 

  23. Sanohkan S, Urapepon S, Harnirattisai C, Sirisinha C, Sunintaboon P (2012) Shear bond strength between autopolymerizing acrylic resin and Co–Cr alloy using different primers. Dent Mater J 31(5):765–771

    Article  PubMed  Google Scholar 

  24. Viwattanatipa N, Jermwiwatkul W, Chintavalakorn R, Nanthavanich N (2010) The effect of different surface preparation techniques on the survival probabilities of orthodontic brackets bonded to nanofill composite resin. J Orthod 37(3):162–173

    Article  PubMed  Google Scholar 

  25. Völkel T (2011) Wissenschaftliche Dokumentation Monobond Plus. In. Wissenschaflicher Dienst Ivoclar Vivadent AG, Liechtenstein

  26. Wolf DM, Powers JM, O’Keefe KL (1993) Bond strength of composite to etched and sandblasted porcelain. Am J Dent 6(3):155–158

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Dentaurum, Ivoclar Vivadent, and Ortho Service Germany for their kind support and provision of the materials used in this study. They also wish to thank the staff members of the Materials Science Laboratory of the First Department of Dentistry (Zahnklinik 1) at University of Erlangen and Mr. Löw for technical support. Financial support for the project was received from the German Orthodontic Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ebert.

Ethics declarations

Conflict of interest

Thomas Ebert, Laura Elsner, Ursula Hirschfelder, Sebastian Hanke stat that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Additional information

Dr. Thomas Ebert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebert, T., Elsner, L., Hirschfelder, U. et al. Shear bond strength of brackets on restorative materials. J Orofac Orthop 77, 73–84 (2016). https://doi.org/10.1007/s00056-016-0011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0011-y

Keywords

Schlüsselwörter

Navigation