Skip to main content
Log in

Identification of a stable reference area for superimposing mandibular digital models

Suche nach stabilen Referenzarealen zur Überlagerung von prä- und posttherapeutischen 3-D-Digitalmodellen des Unterkiefers

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this retrospective study was to assess the stability of buccal and lingual alveolar bone surfaces for superimposing three-dimensional (3D) digital models of dental casts.

Materials and methods

The pre- and posttreatment dental casts and lateral cephalometric radiographs were obtained from 10 adult patients who had undergone orthodontic treatment entailing the extraction of four premolars. Five of them had bilateral mandibular tori and the other 5 patients had no torus. Dental casts were scanned with a three-dimensional (3D) surface scanning system and 3D digital models were reconstructed using 3D reverse modeling software. The pre- and posttreatment digital models were superimposed on the following reference areas by the best-fit method: Area 1, bilateral lingual surfaces of the alveolar process of the posterior teeth; Area 2, the lingual alveolar surface of the anterior and posterior teeth; Area 3, bilateral surfaces of the posterior teeth’s buccal and lingual alveolar surfaces; Area 4, bilateral mandibular tori. The horizontal and vertical movements of the mandibular central incisors and first molars were measured on cephalometric radiographs and on the 3D digital models.

Results

In the 5 patients without a mandibular torus, the median differences between cephalograms and 3D digital models ranged from 0.8–1.9 mm and the maximum differences from 1.5–10.0 mm. The median and maximum differences between cephalograms and 3D digital models superimposed on Area 2 were greater than those superimposed on Areas 1 and 3. In the patients with mandibular tori, the median differences between cephalograms and 3D digital models were under 1.0 mm, the maximum difference being 0.7 mm.

Conclusion

The buccal and lingual alveolar surface near the dentition seems to be inappropriate as a reference area for superimposing 3D mandibular digital models of patients without a mandibular torus. Mandibular tori in adult patients are stable structures which can be used as reference areas for the superimposition of 3D mandibular digital models.

Zusammenfassung

Studienzweck

Retrospektive Studie zur Stabilität der Bukkal- und Lingualflächen des Alveolarknochens hinsichtlich ihrer Nutzung als Referenzareale zur Überlagerung von 3-D-Digitalmodellen des Unterkiefers, erstellt aus Oberflächenscans von Gipsmodellen.

Methode

Die Studie erfolgte an prä- und posttherapeutischen Gipsmodellen und Fernröntgenseitenbildern (FRS) von 10 Erwachsenen, deren kieferorthopädische Behandlungen die Extraktion von 4 Prämolaren umfasst hatte. Bei 5 Patienten war beidseitig ein Torus mandibularis, bei 5 Patienten kein Torus vorhanden. Per 3-D-Oberflächenscanner wurden die Gipsmodelle eingelesen und mit Reverse-Modeling-Software prä- und posttherapeutische 3-D-Digitalmodelle nachkonstruiert, die dann im Best-Fit-Verfahren nach Maßgabe verschiedener Referenzareale 4-mal überlagert wurden: Referenzareal 1 umfasste die beidseitigen Lingualflächen des Alveolarknochens in den Seitenzahnbereichen, Referenzareal 2 seine Lingualfläche entlang des gesamten Kieferbogens, Areal 3 die Lingual- und Bukkalflächen in den Seitenzahnbereichen und Areal 4 die beidseitigen Tori mandibulares. Auf den jeweils überlagerten FRS und 3-D-Digitalmodellen wurden dann die horizontalen und vertikalen Bewegungen der unteren mittleren Schneidezähne und ersten Molaren vermessen.

Resultate

Für die 5 Patienten ohne Tori mandibulares ergaben sich mediane Differenzen zwischen den FRS und den 3-D-Digitalmodellen im Bereich von 0,8–1,9 mm und Maximaldifferenzen im Bereich von 1,5–10,0 mm. Die Überlagerungen der 3-D-Digitalmodelle nach Maßgabe von Referenzareal 2 führten gegenüber den FRS zu größeren medianen und maximalen Differenzen als die Überlagerungen auf Basis der Referenzareale 1 und 3. Für die 5 Patienten mit beidseitigem Torus betrugen die medianen Differenzen unter 1,0 mm und die maximale Differenz 0,7 mm.

Schlussfolgerung

Bei Patienten ohne Tori mandibulares scheinen die Bukkal- und Lingualflächen des Alveolarknochens nahe der Bezahnung keine geeignete Basis zur Überlagerung von 3-D-Digitalmodellen des Unterkiefers darzustellen. Sofern solche Tori bei erwachsenen Patienten anzutreffen sind, handelt es sich bei ihnen um nutzbare, weil stabile Referenzareale zur Überlagerung solcher virtueller Unterkiefermodelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Almeida MA, Phillips C, Kula K et al (1995) Stability of the palatal rugae as landmarks for analysis of dental casts. Angle Orthod 65:43–48

    PubMed  Google Scholar 

  2. Ashmore JL, Kurland BF, King GJ et al (2002) A 3-dimensional analysis of molar movement during headgear treatment. Am J Orthod Dentofacial Orthop 121:18–29

    Article  PubMed  Google Scholar 

  3. Bailey LTJ, Esmailnejad A, Almeida MA (1996) Stability of the palatal rugae as landmarks for analysis of dental casts in extraction and nonextraction cases. Angle Orthod 66:73–78

    PubMed  Google Scholar 

  4. Björk A, Skieller V (1972) Facial development and tooth eruption. An implant study at the age of puberty. Am J Orthod 62:339–383

    Article  PubMed  Google Scholar 

  5. Björk A, Skieller V (1983) Normal and abnormal growth of the mandible. A synthesis of longitudinal cephalometric implant studies over a period of 25 years. Eur J Orthod 5:1–46

    Article  PubMed  Google Scholar 

  6. Cha BK, Lee JY, Jost-Brinkmann P-G et al (2007) Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur J Orthod 29:325–331

    Article  PubMed  Google Scholar 

  7. Choi JI, Cha BK, Jost-Brinkmann P-G et al (2012) Validity of palatal superimposition of 3-dimensional digital models in cases treated with rapid maxillary expansion and maxillary protraction headgear. Korean J Orthod 42:235–241

    Article  PubMed Central  PubMed  Google Scholar 

  8. Choi DS, Jeong YM, Jang I et al (2010) Accuracy and reliability of palatal superimposition of three-dimensional digital models. Angle Orthod 80:497–503

    PubMed  Google Scholar 

  9. Gardner SD, Chaconas SJ (1976) Posttreatment and postretention changes following orthodontic therapy. Angle Orthod 46:151–161

    PubMed  Google Scholar 

  10. Hooton EA (1918) On certain Eskimoid characters in Icelandic skulls. Am J Phys Anthropol 1:53–76

    Article  Google Scholar 

  11. Houston WJ (1983) The analysis of errors in orthodontic measurements. Am J Orthod 83:382–390

    Article  PubMed  Google Scholar 

  12. Hrdlicka A (1940) Mandibular and maxillary hyperostoses. Am J Phys Anthropol 27:1–67

    Article  Google Scholar 

  13. Jang I, Tanaka M, Koga Y et al (2009) A novel method for the assessment of three-dimensional tooth movement during orthodontic treatment. Angle Orthod 79:447–453

    Article  PubMed  Google Scholar 

  14. Kim BM, Lee SH (1990) Statistical study of torus palatinus and torus mandibularis in 1758 dental patients. J Kyungpook Univ Sch Dent 7:85–94

    Google Scholar 

  15. Lucien De Coster B (1953) A new line of reference for the study of lateral facial teleradiographs. Am J Orthod 39:304–306

    Article  Google Scholar 

  16. Luppanapornlarp S, Johnston LE (1993) The effects of premolar-extraction: a long-term comparison of outcomes in “clear-cut” extraction and nonextraction Class II patients. Angle Orthod 63:257–272

    PubMed  Google Scholar 

  17. Mulie RM, Hoeve AT (1976) The limitations of tooth movement within the symphysis, studied with laminagraphy and standardized occlusal films. J Clin Orthod 10:882–893

    PubMed  Google Scholar 

  18. Neville BW, Damm DD, Allen CM, Bouquot JE (2009) Oral and Maxillofacial Pathology, 3. Aufl. Saunders Elsevier, St. Louis

  19. Pancherz H (1982) The mechanism of Class II correction in Herbst appliance treatment. A cephalometric investigation. Am J Orthod 82:104–113

    Article  PubMed  Google Scholar 

  20. Trpkova B, Major P, Prasad N et al (1997) Cephalometric landmarks identification and reproducibility: a meta analysis. Am J Orthod Dentofacial Orthop 112:165–170

    Article  PubMed  Google Scholar 

  21. Wehrbein H, Bauer W, Diedrich P (1996) Mandibular incisors, alveolar bone, and symphysis after orthodontic treatment. A retrospective study. Am J Orthod Dentofacial Orthop 110:239–246

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. Kiyong An, Insan Jang, Dong-Soon Choi, Paul-Georg Jost-Brinkmann, and Bong-Kuen Cha state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. Kiyong An, Insan Jang, Dong-Soon Choi, Paul-Georg Jost-Brinkmann und Bong-Kuen Cha geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-K. Cha.

Additional information

This manuscript is based on a poster that was awarded the best poster prize in 2011 at the 85th annual meeting of the DGKFO in Stuttgart, Germany. Dieses Manuskript beruht auf einem Poster, das bei der 85. Wissenschaftlichen Jahrestagung der DGKFO in Stuttgart 2011 mit dem Posterpreis prämiert wurde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, K., Jang, I., Choi, DS. et al. Identification of a stable reference area for superimposing mandibular digital models. J Orofac Orthop 76, 508–519 (2015). https://doi.org/10.1007/s00056-015-0310-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-015-0310-8

Keywords

Schlüsselwörter

Navigation