Skip to main content
Log in

Compression of human primary cementoblasts leads to apoptosis

A possible cause of dental root resorption?

Kompression führt in primären humanen Zementoblasten zur Apoptose

Eine mögliche Ursache für Wurzelresorptionen

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

One of the most common side effects of orthodontic treatment is root resorption on the pressure side of tooth movement. This is usually repaired by cementoblasts, but 1–5 % of patients eventually experiences a marked reduction in root length because no repair has occurred. The reason why cementoblasts should lose their repair function in such cases is not well understood. There is evidence from genome-wide expression analysis (Illumina HumanHT-12 v4 Expression BeadChip Kit; > 30,000 genes) that apoptotic processes are upregulated after the compression of cementoblasts, which is particularly true of the pro-apoptotic gene AXUD1.

Methods

Human primary cementoblasts (HPCBs) from two individuals were subjected to compressive loading at 30 g/cm2 for 1/6/10 h. The cells were then evaluated for apoptosis by flow cytometry, for mRNA expression of putative genes (AXUD1, AXIN1, AXIN2) by quantitative PCR, and for involvement of c-Jun-N-terminal kinases (JNKs) in the regulation of AXUD1 via western blotting. In addition, platelet-derived growth factor receptor-β (PDGFRβ) was selectively inhibited by SU16f to analyze the effect of PDGFRβ-dependent signal transduction on AXUD1 and AXIN1 expression.

Results

The percentage of apoptotic HPCBs rose after only 6 h of compressive loading, and 18–20 % of cells were apoptotic after 10 h. Microarray data revealed significant upregulation of the pro-apoptotic gene AXUD1 after 6 h and quantitative PCR significant AXUD1 upregulation after 6 and 10 h of compression. AXIN1 and AXIN2 expression in HPCBs was significantly increased after compressive loading. Our tests also revealed that PDGFRβ signaling inhibition by SU16f augmented the expression of AXIN1 and AXUD1 in HPCBs under compression.

Conclusion

Increased apoptosis of compressed HPCBs might help explain why cementoblasts, rather than invariably repairing all cases of root resorption, sometimes allow the original root length to shorten. The pathway hypothesized to lead to cementoblast apoptosis involves PDGF signaling, with this signal transduction’s inhibition augmenting the expression of pro-apoptotic genes. Thus activating PDGF signaling may modify the signaling pathway for the apoptosis of cementoblasts, which would reveal a protective role of PDGF for these cells. Further studies are needed to develop strategies of treatment capable of minimizing root resorption.

Zusammenfassung

Ziele

Wurzelresorptionen auf der Druckseite der Zahnbewegung sind eine der häufigsten Nebenwirkungen kieferorthopädischer Behandlungen. Zementoblasten übernehmen die Reparatur der Defekte. Bei 1–5 % der Patienten bleibt dies aus, es kommt zu starken Verkürzungen der Wurzel. Warum die Zementoblasten in diesen Fällen ihre reparativen Eigenschaften verlieren, ist nicht vollständig geklärt. Eine genomweite Expressionsanalyse (Illumina HumanHT-12 v4 Expression BeadChip; > 30.000 Gene) hat Hinweise auf eine Hochregulation apoptotischer Prozesse, insbesondere des proapoptotischen Gens AXUD1 nach der Kompression von Zementoblasten geliefert.

Methode

Humane primäre Zementoblasten (HPCB; n = 2) wurden 1, 6 und 10 h mit 30 g/cm2 komprimiert. Eine Apoptose der HPCBs wurde mittels Durchflusszytometrie, die mRNA-Expression putativ beteiligter Gene (AXUD1, AXIN1 und AXIN2) durch quantitative Polymerasekettenreaktion (qPCR), und Western-Blot, eine mögliche Beteiligung der c-Jun-N-terminalen Kinasen (JNK) an der Regulation von AXUD1 in komprimierten HPCBs untersucht. Zur Bestimmung des Einflusses des PDGFR(„platelet derived growth factor receptor)-β-abhängigen Signaltransduktion auf die AXUD1- und AXIN1-Expression wurde der PDGFR-β selektiv mit SU16f gehemmt.

Ergebnisse

Bereits nach 6 h Druckbelastung stieg der Anteil apoptotischer HPCBs an. Nach 10 h waren etwa 18–20 % der Zellen apoptotisch. Im Microarray konnte gezeigt werden, dass das proapoptotische AXUD1 nach 6 h Kompression signifikant anstieg. Die qPCR zeigte eine signifikante Hochregulation des proapoptotischen Gens AXUD1 nach 6 und 10 h Kompression. Die Expression von AXIN1 und AXIN2 war ebenfalls nach Druckbelastung in den HPCBs signifikant erhöht. Eine PDGFR-β-abhängige negative Regulation von AXUD1 und AXIN1 unter Kompressionsbedingungen in HPCBs wurde in vitro nachgewiesen.

Schlussfolgerung

Die vermehrte Apoptose von HPCBs unter Kompression könnte einen Hinweis liefern, warum Zementoblasten nicht alle Wurzelresorptionen reparieren und es somit zu einem Verlust der Zahnwurzel kommt. Der von uns hypothetisierte Signalweg, der zur Apoptose der Zementoblasten führt, könnte von der Aktivierung des PDGF-Signalwegs beeinflusst werden. PDGF könnte protektiv wirken. Weitere Studien sind notwendig, um therapeutische Strategien zu entwickeln, die Wurzelresorptionen vermindern können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bille ML, Thomsen B, Kjaer I (2011) Apoptosis in the human periodontal membrane evaluated in primary and permanent teeth. Acta Odontol Scand 69:385–388

    Article  PubMed  Google Scholar 

  2. Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod 72:175–179

    PubMed  Google Scholar 

  3. Chen LL, Lei LH, Ding PH et al (2011) Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Arch Oral Biol 56:1655–1662

    Article  PubMed  Google Scholar 

  4. Davidovitch Z (1991) Tooth movement. Crit Rev Oral Biol Med 2:411–450

    PubMed  Google Scholar 

  5. Diercke K, Sen S, Kohl A et al (2011) Compression-dependent up-regulation of ephrin-A2 in PDL fibroblasts attenuates osteogenesis. J Dent Res 90:1108–1115

    Article  PubMed  Google Scholar 

  6. Diercke K, Kohl A, Lux CJ et al (2012) IL-1beta and compressive forces lead to a significant induction of RANKL-expression in primary human cementoblasts. J Orofac Orthop 73:397–412

    Article  PubMed  Google Scholar 

  7. Diercke K, Konig A, Kohl A et al (2012) Human primary cementoblasts respond to combined IL-1beta stimulation and compression with an impaired BSP and CEMP-1 expression. Eur J Cell Biol 91:402–412

    Article  PubMed  Google Scholar 

  8. Diercke K, Zingler S, Kohl A et al (2014) Gene expression profile of compressed primary human cementoblasts before and after IL-1beta stimulation. Clin Oral Investig

  9. Feijoo CG, Sarrazin AF, Allende ML et al (2009) Cystein-serine-rich nuclear protein 1, Axud1/Csrnp1, is essential for cephalic neural progenitor proliferation and survival in zebrafish. Dev Dyn 238:2034–2043

    Article  PubMed  Google Scholar 

  10. Glavic A, Molnar C, Cotoras D et al (2009) Drosophila Axud1 is involved in the control of proliferation and displays pro-apoptotic activity. Mech Dev 126:184–197

    Article  PubMed  Google Scholar 

  11. Glossop JR, Cartmell SH (2009) Effect of fluid flow-induced shear stress on human mesenchymal stem cells: differential gene expression of IL1B and MAP3K8 in MAPK signaling. Gene Expr Patterns 9:381–388

    Article  PubMed  Google Scholar 

  12. Gonzalez YR, Zhang Y, Behzadpoor D et al (2008) CITED2 signals through peroxisome proliferator-activated receptor-gamma to regulate death of cortical neurons after DNA damage. J Neurosci 28:5559–5569

    Article  PubMed  Google Scholar 

  13. Göz G, Rakosi T (1989) Apical root resorption during orthodontic treatment. Fortschr Kieferorthop 50:196–206

    Article  PubMed  Google Scholar 

  14. Göz GR, Rahn BA, Schulte-Mönting J (1992) The effects of horizontal tooth loading on the circulation and width of the periodontal ligament—an experimental study on beagle dogs. Eur J Orthod 14:21–25

    Article  PubMed  Google Scholar 

  15. Hamaya M, Mizoguchi I, Sakakura Y et al (2002) Cell death of osteocytes occurs in rat alveolar bone during experimental tooth movement. Calcif Tissue Int 70:117–126

    Article  PubMed  Google Scholar 

  16. Hao Y, Xu C, Sun SY et al (2009) Cyclic stretching force induces apoptosis in human periodontal ligament cells via caspase-9. Arch Oral Biol 54:864–870

    Article  PubMed  Google Scholar 

  17. Hollinger JO, Hart CE, Hirsch SN et al (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. J Bone Joint Surg Am 90(Suppl 1):48–54

    Article  PubMed  Google Scholar 

  18. Inoue D, Kido S, Matsumoto T (2004) Transcriptional induction of FosB/DeltaFosB gene by mechanical stress in osteoblasts. J Biol Chem 279:49795–49803

    Article  PubMed  Google Scholar 

  19. Ishiguro H, Tsunoda T, Tanaka T et al (2001) Identification of AXUD1, a novel human gene induced by AXIN1 and its reduced expression in human carcinomas of the lung, liver, colon and kidney. Oncogene 20:5062–5066

    Article  PubMed  Google Scholar 

  20. Jäger A, Zhang D, Kawarizadeh A et al (2005) Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur J Orthod 27:1–11

    Article  PubMed  Google Scholar 

  21. Jäger A, Kunert D, Friesen T et al (2008) Cellular and extracellular factors in early root resorption repair in the rat. Eur J Orthod 30:336–345

    Article  PubMed  Google Scholar 

  22. Javed F, Al-Askar M, Al-Rasheed A et al (2011) Significance of the platelet-derived growth factor in periodontal tissue regeneration. Arch Oral Biol 56:1476–1484

    Article  PubMed  Google Scholar 

  23. Kanda A, Tsuyama S, Murata F et al (2002) Immunoelectron microscopic analysis of lysosomal deposits in alpha-N-acetylgalactosaminidase deficiency with angiokeratoma corporis diffusum. J Dermatol Sci 29:42–48

    Article  PubMed  Google Scholar 

  24. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kitagawa M, Tahara H, Kitagawa S et al (2006) Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo. Bone 39:1035–1042

    Article  PubMed  Google Scholar 

  26. Kvam E (1972) Scanning electron microscopy of tissue changes on the pressure surface of human premolars following tooth movement. Scand J Dent Res 80:357–368

    PubMed  Google Scholar 

  27. Kvam E (1972) Tissue changes on the marginal pressure side following experimental tooth movement. A histologic, autoradiographic, and scanning electron microscopic study. Nor Tannlaegeforen Tid 82:522–528

    PubMed  Google Scholar 

  28. Lee JH, Lee DS, Nam H et al (2012) Dental follicle cells and cementoblasts induce apoptosis of ameloblast-lineage and Hertwig’s epithelial root sheath/epithelial rests of Malassez cells through the Fas-Fas ligand pathway. Eur J Oral Sci 120:29–37

    Article  PubMed  Google Scholar 

  29. Mabuchi R, Matsuzaka K, Shimono M (2002) Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J Periodontal Res 37:118–124

    Article  PubMed  Google Scholar 

  30. Owman-Moll P, Kurol J, Lundgren D (1995) Repair of orthodontically induced root resorption in adolescents. Angle Orthod 65:403–408 (discussion 409–410)

    PubMed  Google Scholar 

  31. Owman-Moll P, Kurol J (1998) The early reparative process of orthodontically induced root resorption in adolescents—location and type of tissue. Eur J Orthod 20:727–732

    Article  PubMed  Google Scholar 

  32. Rana MW, Pothisiri V, Killiany DM et al (2001) Detection of apoptosis during orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop 119:516–521

    Article  PubMed  Google Scholar 

  33. Redlich M, Roos H, Reichenberg E et al (2004) The effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of metalloproteinases and beta-actin in cultured human periodontal ligament fibroblasts. J Periodontal Res 39:27–32

    Article  PubMed  Google Scholar 

  34. Ritter N, Mussig E, Steinberg T et al (2007) Elevated expression of genes assigned to NF-kappaB and apoptotic pathways in human periodontal ligament fibroblasts following mechanical stretch. Cell Tissue Res 328:537–548

    Article  PubMed  Google Scholar 

  35. Rodrigues LV, Vasconcelos AC, Campos PA et al (2009) Apoptosis in pulp elimination during physiological root resorption in human primary teeth. Braz Dent J 20:179–185

    PubMed  Google Scholar 

  36. Rodrigues LV, Del Puerto HL, Brant JM et al (2012) Caspase-3/caspase-8, bax and bcl2 in pulps of human primary teeth with physiological root resorption. Int J Paediatr Dent 22:52–59

    Article  PubMed  Google Scholar 

  37. Rygh P (1972) Ultrastructural cellular reactions in pressure zones of rat molar periodontium incident to orthodontic tooth movement. Acta Odontol Scand 30:575–593

    Article  PubMed  Google Scholar 

  38. Sakai Y, Balam TA, Kuroda S et al (2009) CTGF and apoptosis in mouse osteocytes induced by tooth movement. J Dent Res 88:345–350

    Article  PubMed  Google Scholar 

  39. Saygin NE, Giannobile WV, Somerman MJ (2000) Molecular and cell biology of cementum. Periodontol 2000 24:73–98

    Article  PubMed  Google Scholar 

  40. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  PubMed  Google Scholar 

  41. Weltman B, Vig KW, Fields HW et al (2010) Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop 137:462–476 (discussion 412A)

    Article  PubMed  Google Scholar 

  42. Wolf M, Lossdorfer S, Abuduwali N et al (2013) In vivo differentiation of human periodontal ligament cells leads to formation of dental hard tissue. J Orofac Orthop

  43. Yan Y, Tang D, Chen M et al (2009) Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 122:3566–3578

    Article  PubMed Central  PubMed  Google Scholar 

  44. Zhong W, Xu C, Zhang F et al (2008) Cyclic stretching force-induced early apoptosis in human periodontal ligament cells. Oral Dis 14:270–276

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank the staff members at the Genomics and Proteomics Core Facility of the German Cancer Research Center (DKFZ) for conducting the microarray analysis and for related services. Funds for this study were provided by the University of Heidelberg Medical School (GEROK grant) and the German Society of Dentistry and Oral Medicine (DGZMK).

Danksagung

Wir bedanken uns bei den Mitarbeitern der Genomics and Proteomics Core Facility des Deutschen Krebsforschungszentrum (DKFZ) für die Durchführung der Microarray-Analysen und die damit verbundenen Dienstleistungen. Diese Studie wurde mit Mitteln der Medizinischen Fakultät der Universität Heidelberg (GEROK-Förderstipendium) und der Deutschen Gesellschaft für Zahn-, Mund- und Kieferheilkunde (DGZMK) durchgeführt.

Compliance with ethical guidelines

Conflict of interest. K. Diercke, A. Kohl, C.J. Lux, and R. Erber state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. K. Diercke, A. Kohl, C.J. Lux und R. Erber geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Diercke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diercke, K., Kohl, A., Lux, C. et al. Compression of human primary cementoblasts leads to apoptosis. J Orofac Orthop 75, 430–445 (2014). https://doi.org/10.1007/s00056-014-0237-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0237-5

Keywords

Schlüsselwörter

Navigation