Skip to main content

Zygomatic mini-implant for Class II correction in growing patients

Zygoma-Miniimplantate zur Korrektur von Klasse-II-Anomalien bei heranwachsenden Patientinnen

Abstract

Objective

The correction of some Angle Class II malocclusions requires distalization of the upper first molars via an induced orthopedic effect. In the present study, we tested the potential of using a mini-implant to achieve a modified zygomatic anchorage system for Class II correction.

Materials and methods

Our study comprised 10 treated and 10 control Class II growing female subjects aged 10–12 years. Orthodontic mini-implants were placed in the zygomatic buttress to act as anchorage for the distalization. The follow-up period was 6 months; treatment changes were assessed by cone beam CT scans.

Results

Compared to the control group, the treatment group showed significant retrusion of point A, anti-clockwise rotation of the maxillary plane, and a mean molar distalization of 2.92 ± 0.69 mm with no extrusion, no tipping or buccal rolling. There was significant upper incisor intrusion (1.89 ± 0.84 mm) with no changes in incisor inclination. No change in the mandibular plane angle was detected.

Conclusion

Use of this technique allowed Class II correction with concomitant reduction in the visible gingiva in the treated subjects without the adverse effects experienced with other appliances.

Zusammenfassung

Studienziel

Zur Korrektur bestimmter Klasse-II-Bissanomalien nach Angle müssen die oberen Sechsjahrmolaren mit orthopädischem Effekt distalisiert werden. In der vorliegenden Studie prüften wir die Anwendung von Zygoma-Miniimplantaten als Verankerungssystem zur Korrektur von Klasse-II-Anomalien.

Material und Methoden

Die Studie umfasste eine Behandlungsgruppe von 10 und eine Kontrollgruppe von weiteren 10 Patientinnen mit diagnostizierten Klasse-II-Anomalien im Alter von 10−12 Jahren. In den Jochbeinpfeiler eingesetzte Miniimplantate dienten zur Verankerung der Distalisierungsapparaturen. Die Nachuntersuchungsdauer betrug 6 Monate. Die therapeutischen Veränderungen wurden mittels digitaler Volumentomographie beurteilt.

Resultate

Gegenüber der Kontrollgruppe zeigten sich bei den behandelten Mädchen signifikante Rückverlagerungen des A-Punktes, Rotationen der Oberkieferebene gegen den Uhrzeigersinn und eine mittlere Distalisierung der Molaren von 2,92 ± 0,69 mm ohne Extrusionskomponente sowie Kippungen oder „bukkale Rollbewegungen“. Die oberen Schneidezähne waren bei unveränderter Neigung signifikant intrudiert (1,89 ± 0,84 mm). Winkelveränderungen der Unterkieferebene waren nicht zu erkennen.

Schlussfolgerung

Die präsentierte Technik ermöglichte eine Korrektur der Klasse-II-Anomalien, reduzierte dabei die ins Blickfeld rückenden Gingivaanteile und zeitigte keinen der unerwünschten Effekte, wie sie von anderen Apparaturen bekannt sind.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. American Association of Orthodontists Bulletin (1982) Preliminary results of headgear survey. Bulletin 1:2

    Google Scholar 

  2. Arat ZM, Tuerkkahraman H, English JD et al (2010) Longitudinal growth changes of the cranial base from puberty to adulthood. Angle Orthod 80:725–732

    Article  Google Scholar 

  3. Arbuckle GR, Nelson CL, Roberts WE (1991) Osseointegrated implants and orthodontics. Oral Maxillofac Surg Clin North Am 3:903–919

    Google Scholar 

  4. Atac AT, Erdem D (2007) Effects of three-dimentional biometric maxillary distalizing arches and cervical headgear on dentofacial structures. Eur J Orthod 29:52–59

    Article  Google Scholar 

  5. Chatzigianni A, Halazonetis DJ (2009) Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. Am J Orthod Dentofacial Orthop 136:481.e1–481.e9

    PubMed  Article  Google Scholar 

  6. Deguchi T, Murakami T, Kuroda S et al (2008) Comparison of the intrusion effects on the maxillary incisors between implant anchorage and J-hook headgear. Am J Orthod Dentofacial Orthop 133:654–660

    PubMed  Article  Google Scholar 

  7. Egolf RJ, Begole EA, Upshaw HS (1990) Factors associated with orthodontic patient compliance with intraoral elastic and headgear wear. Am J Orthod Dentofacial Orthop 97:336–348

    PubMed  Article  Google Scholar 

  8. Erverdi N, Acar A (2005) Zygomatic Anchorage for en masse retraction in the treatment of severe class II division 1. Angle Orthod 75:483–490

    PubMed  Google Scholar 

  9. Erverdi N, Usumez S, Solak A, Koldas T (2007) Noncompliance open-bite treatment with zygomatic anchorage. Angle Orthod 77:986–990

    PubMed  Article  Google Scholar 

  10. Freitas MR, Lima DV, Freitas KM et al (2008) Cephalometric evaluation of Class II malocclusion treatment with cervical headgear and mandibular fixed appliances. Eur J Orthod 30:477–482

    PubMed  Article  Google Scholar 

  11. Gandini LG, Gandini MR, Martins JC, Del-Santo M (2001) Effects of cervical headgear and edgewise appliances on growing patients. Am J Orthod Dentofacial Orthop 119:531–539

    PubMed  Article  Google Scholar 

  12. Gelgor IE, Buyukyilmaz T, Karaman AI et al (2004) Intraosseous screw—supported upper molar distalization. Angle Orthod 74:838–850

    PubMed  Google Scholar 

  13. Grauer D, Cevidanes LS, Proffit WR (2009) Working with DICOM craniofacial images. Am J Orthod Dentofacial Orthop 136:460–470

    PubMed Central  PubMed  Article  Google Scholar 

  14. Holberg C, Holberg N, Rudzki-Janson I (2008) Sutural strain in orthopedic headgear therapy. Am J Orthod Dentofacial Orthop 134:53–59

    PubMed  Article  Google Scholar 

  15. Jung BA, Yildizhan F, Wehrbein H (2008) Bone-to-implant contact of orthodontic implants in humans—a histomorphometric investigation. Eur J Orthod 30:552–557

    PubMed  Article  Google Scholar 

  16. Kaya B, Arman A, Uckan S, Yazici AC (2009) Comparison of the zygoma anchorage system with cervical headgear in buccal segment distalization. Eur J Orthod 31:417–424

    PubMed  Article  Google Scholar 

  17. Keles A, Erverdi N, Sezen S (2003) Bodily distalization of molars with absolute anchorage. Angle Orthod 73:471–482

    PubMed  Google Scholar 

  18. Kim S, Lee S, Cho I et al (2009) Rotational resistance of surface-treated mini-implants. Angle Orthod 79:899–907

    PubMed  Article  Google Scholar 

  19. Kircelli BH, Pektas Z, Kircelli C (2006) Maxillary molar distalization with a bone-anchored pendulum appliance. Angle Orthod 76:650–659

    PubMed  Google Scholar 

  20. Lim S, Ki-Hong R (2008) Distal movement of maxillary molars using a lever-arm and mini-implant system. Angle Orthod 78:167–175

    PubMed  Article  Google Scholar 

  21. Liou E, Chen P, Wang Y, Lin JC (2007) A computed tomographic image study on the thickness of the infrazygomatic crest of the maxilla and its clinical implications for miniscrew insertion. Am J Orthod Dentofacial Orthop 131:352–356

    PubMed  Article  Google Scholar 

  22. Ludlow JB, Ivanovic M (2008) Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):106–114

    PubMed  Article  Google Scholar 

  23. Mauricio BR, Camilli JA, Francischone CR et al (2005) Zygomatic bone: anatomic bases for osseointegrated implant anchorage. Int J Oral Maxillofac Implants 20:441–447

    Google Scholar 

  24. Nur M, Bayram M, Pampu A (2010) Zygoma-gear appliance for intraoral upper molar distalization. Korean J Orthod 40:195–206

    Article  Google Scholar 

  25. Taner T, Yukay F, Pehlivanoglu M, Caki-rer B (2003) A comparative analysis of maxillary tooth movement produced by cervical headgear and Pend-X appliance. Angle Orthod 73:686–691

    PubMed  Google Scholar 

  26. Terajima M, Yanagita N, Ozeki K et al (2008) Three dimensional analysis system for orthognathic surgery patients with jaw deformities. Am J Orthod Dentofacial Orthop 134:100–111

    PubMed  Article  Google Scholar 

  27. Trakyali G, Sayinsu K, Muezzinoglu A, Arun T (2008) Conscious hypnosis as a method for patient motivation in cervical headgear wear—a pilot study. Eur J Orthod 30:147–152

    PubMed  Article  Google Scholar 

  28. Umemori M, Sugawara J, Mitani H et al (1999) Skeletal anchorage system for open-bite correction. Am J Orthod Dentofacial Orthop 115:166–174

    PubMed  Article  Google Scholar 

  29. Veziroglu F, Uckan S, Ozden U, Arman A (2008) Stability of zygomatic plate-screw orthodontic anchorage system A finite element analysis. Angle Orthod 78:902–907

    PubMed  Article  Google Scholar 

  30. Zentner A, Sergl H, Filippidis G (1996) A holographic study of the variation in bone deformations resulting from different headgear forces in a macerated human skull. Angle Orthod 66:463–472

    PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. M.M. El-Dawlatly, A.M. Abou-EL-Ezz, F.A. El-Sharaby, and Y.A. Mostafa state that there is no conflict of interest.

Einhaltung ethischer Richtlinien

Interessenkonflikt. M.M. El-Dawlatly, A.M. Abou-EL-Ezz, F.A. El-Sharaby und Y.A. Mostafa geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.A. Mostafa B.D.S., FDSRCS (Ed), M.Sc., Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Dawlatly, M., Abou-EL-Ezz, A., El-Sharaby, F. et al. Zygomatic mini-implant for Class II correction in growing patients. J Orofac Orthop 75, 213–225 (2014). https://doi.org/10.1007/s00056-014-0214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0214-z

Keywords

  • Skeletal anchorage
  • Class II
  • Mini-implants

Schlüsselwörter

  • Skeletale Verankerung
  • Klasse II
  • Miniimplantate