Skip to main content
Log in

Locating the center of resistance in individual teeth via two- and three-dimensional radiographic data

Bestimmung des Widerstandszentrums einzelner Zähne auf Basis von 2-D und 3-D röntgenologischen Daten

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

The preferred reference point to describe the force–moment system exerted upon a tooth is its center of resistance (CR). Morphological data on the dentoalveolar complex can be used to locate this point either three-dimensionally (3D) with the finite element (FE) method, or two-dimensionally (2D) with a mathematical method calculating the centroid of the projected dental root. This study aimed to compare and appraise these two methods with regard to their accuracy and time requirements.

Methods

Three radiological datasets with permanent teeth were included. Each single 3D dataset was used in each of these patients to derive both a 3D and 2D morphological model of the upper right central incisor. CR levels were evaluated in percent, indicating the relative height as measured from the (averaged levels of the mesial and distal) bony ridge margin to the tooth’s apex.

Results

Mean CR levels of 42.8% for distalization and 56.5% for lingual movement were obtained from the 3D FE simulations of initial tooth movement. The 2D mathematical model yielded a mean CR level of 44.5%. Compared to this mathematical approach, the 3D FE simulations were around 15 times more time-consuming, with an interactive requirement of around 15 h.

Conclusion

Because they contain so much more morphological information, 3D FE simulations should offer superior predictability. In addition, they are the only method offering detailed CR identification for specific directions of tooth movement. Before this method can be used in clinical practice, however, there is still a major need to reduce time requirements via further automation of process steps and to investigate how it should be applied to different tooth types.

Zusammenfassung

Ziele

Der bevorzugte Referenzpunkt eines Zahnes zur Beschreibung eines auf ihn ausgeübten Kraft-Drehmoment-Systems ist das Widerstandszentrum (WZ). Eine Bestimmung des WZ auf Basis von morphologischen Daten des dentoalveolären Komplexes ist auf folgende Weise realisierbar: mit der 3-D-FE(Finite-Elemente)-Methode sowie einer 2-D mathematischen Methode mit Berechnung des Flächenschwerpunkts der projizierten Zahnwurzel. Ziel der Studie war es, diese beiden Methoden hinsichtlich der Aspekte Ergebnisgenauigkeit und Zeitaufwand zu vergleichen und zu bewerten.

Methoden

Für drei rechte obere Inzisivi im bleibenden Gebiss wurden auf Basis eines 3-D-Datensatzes jeweils ein 3-D sowie ein 2-D morphologisches Modell erstellt.

Ergebnisse

Die 3-D-FE-Simulationen zur initialen Zahnbewegung ergaben für die distale Bewegungsrichtung eine relative Lage des WZ von durchschnittlich 42,8% der Distanz vom gemittelten mesialen und distalen Niveau des Limbus alveolaris zum Apex und für die linguale Bewegung eine entsprechende Höhe von 56,5%. Die mit der 2-D mathematischen Methode ermittelten WZ-Positionen lagen durchschnittlich auf einer relativen Höhe von 44,5%. Der notwendige interaktive Zeitaufwand pro Zahn zur Bestimmung des WZ mittels 3-D-FE-Simulationen lag bei etwa 15 h und war etwa 15-mal so groß wie derjenige der 2-D mathematischen Methode.

Schlussfolgerung

Insbesondere aufgrund des höheren morphologischen Informationsgehalts sollten die Ergebnisse der 3-D-FE-Simulationen die höchste Aussagekraft besitzen. Zudem ist nur mit der 3-D-Methode eine differenzierte Bestimmung des WZ für verschiedene Bewegungsrichtungen möglich. Vor einer klinischen Anwendung der Methode sind noch eine weitere Automatisierung der Prozessschritte zur Reduzierung des Zeitaufwandes sowie Untersuchungen bei verschiedenen Zahntypen im größeren Maßstab notwendig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andrews LF (1972) The six keys to normal occlusion. Am J Orthod 62:296–309

    Article  PubMed  Google Scholar 

  2. Bourauel C, Keilig L, Rahimi A et al (2007) Computer-aided analysis of the biomechanics of tooth movements. Int J Comput Dent 10:25–40

    PubMed  Google Scholar 

  3. Burstone CJ (1962) The biomechanics of tooth movement. In: Kraus BS, Riedel RA (eds) Vistas in orthodontics. Lea & Febiger, Philadelphia, pp 197–213

  4. Burstone CJ, Pryputniewicz RJ (1980) Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 77:396–409

    Article  PubMed  Google Scholar 

  5. Burstone CJ, Pryputniewicz R, Weeks R (1981) Centers of resistance of the human mandibular molars. J Dent Res 60:515

    Google Scholar 

  6. Cattaneo PM, Dalstra M, Melsen B (2008) Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens. Am J Orthod Dentofacial Orthop 133:681–689

    Article  PubMed  Google Scholar 

  7. Dermaut L, Kleutghen J, De Clerk H (1986) Experimental determination of the center of resistance of the upper molar in amacerated, dry human skull submitted to horizontal headgear traction. Am J Orthod Dentofacial Orthop 90:29–36

    Article  PubMed  Google Scholar 

  8. Dorow C (2004) Numerische Simulation und experimentelle Untersuchung zur Zahnbewegung. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr biol hum, Medizinische Fakultät der Universität Ulm

  9. Dorow C, Sander FG (2005) Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop 66:208–218

    Article  PubMed  Google Scholar 

  10. Fukagawa H, Motegi E, Fuma A et al (2010) Tooth inclination in elderly with many remaining teeth observed by 3-D imaging. Bull Tokyo Dent Coll 51:69–76

    Article  PubMed  Google Scholar 

  11. Geiger M (2013) Finite element-based force/moment-driven simulation of orthodontic tooth movement. Comput Methods Biomech Biomed Engin 16:639–647

    Article  PubMed  Google Scholar 

  12. Geramy A (2000) Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). Am J Orthod Dentofacial Orthop 117:399–405

    Article  PubMed  Google Scholar 

  13. Göz G, Rahn BA (1992) Die Bedeutung des Widerstandszentrums für die Biologie der Zahnbewegung. Fortschr Kieferorthop 53:137–141

    Article  PubMed  Google Scholar 

  14. Hocevar RA (1981) Understanding, planning, and managing tooth movement: orthodontic force system theory. Am J Orthod 80:457–477

    Article  PubMed  Google Scholar 

  15. Hohmann A, Kober C, Radtke T et al (2008) On the feasibility of using the finite element approach for the characterization of the dental periodontal ligament in vivo. J Med Biomech 23:26–30

    Google Scholar 

  16. Hohmann A (2009) Finite-Elemente-Simulationen und Experimente zur Modellierung des menschlichen Parodontalligaments. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr. biol. hum., Medizinische Fakultät der Universität Ulm

  17. Jones ML, Hickman J, Middleton J et al (2001) A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod 28:29–38

    Article  PubMed  Google Scholar 

  18. Lapatki BG, Paul O (2007) Smart brackets for 3D-force-moment measurements in orthodontic research and therapy—developmental status and prospects. J Orofac Orthop 68:377–396

    Article  PubMed  Google Scholar 

  19. Meyer BN, Chen J, Katona TR (2010) Does the center of resistance depend on the direction of tooth movement. Am J Orthod Dentofacial Orthop 137:354–361

    Article  PubMed  Google Scholar 

  20. Osipenko MA, Nyashin MY, Nyashin YI (1999) Center of resistance and center of rotation of a tooth: the definitions, conditions of existence, properties. Russ J Biomech 1:5–15

    Google Scholar 

  21. Pedersen E, Andersen K, Gjessing P (1990) Electronic determination of centres of rotation produced by orthodontic force systems. Eur J Orthod 12:272–280

    Article  PubMed  Google Scholar 

  22. Rues S, Panchaphongsaphak B, Gieschke P et al (2011) An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. J Biomech 44:1892–1900

    Article  PubMed  Google Scholar 

  23. Sia S, Koga Y, Yoshida N (2007) Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study. Angle Orthod 77:999–1003

    Article  PubMed  Google Scholar 

  24. Sia S, Shibazaki T, Koga Y et al (2009) Experimental determination of optimal force system required for control of anterior tooth movement in sliding mechanics. Am J Orthod Dentofacial Orthop 135:36–41

    Article  PubMed  Google Scholar 

  25. Tanne K, Koenig HA, Burstone CJ (1988) Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthop 94:426–431

    Article  PubMed  Google Scholar 

  26. Vanden Bulcke MM, Burstone CJ, Sachdeva RCL et al (1987) Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 91:375–384

    Article  Google Scholar 

  27. Vanden Bulcke MM, Dermaut LR, Sachdeva CL et al (1986) The center of resistance of anterior teeth during intrusion using the laser reflection technique and holographic interferometry. Am J Orthod Dentofacial Orthop 90:211–220

    Article  Google Scholar 

  28. Viceconti M, Olsen S, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech 20:451–454

    Article  Google Scholar 

  29. Vollmer D, Bourauel C, Maier K et al (1999) Determination of the centre of resistance in an upper human canine and idealized tooth model. Eur J Orthod 21:633–648

    Article  PubMed  Google Scholar 

  30. Yoshida N, Koga Y, Kobayashi K et al (2000) A new method for qualitative and quantitative evaluation of tooth displacement under the application of orthodontic forces using magnetic sensors. Med Eng Phys 22:293–300

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Juergen Salk from the Communication and Information Center at University of Ulm for comprehensive support in using the segmentation and FE software. They are also indebted to Prof. Philippe Young of Simpleware (Exeter, UK).

Danksagung

Die Autoren möchten sich bei Herrn Jürgen Salk vom Kommunikations- und Informationszentrum der Universität Ulm für die umfassende Unterstützung bei der Anwendung der Segmentierungs- und FE-Programme bedanken. Ein weiterer Dank gilt Prof. Philippe Young von der Fa. Simpleware (Exeter, UK).

Compliance with ethical guidelines

Conflict of interest. M.E. Geiger and B.G. Lapatki state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. M.E. Geiger und B.G. Lapatki geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.E. Geiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, M., Lapatki, B. Locating the center of resistance in individual teeth via two- and three-dimensional radiographic data. J Orofac Orthop 75, 96–106 (2014). https://doi.org/10.1007/s00056-013-0198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-013-0198-0

Keywords

Schlüsselwörter

Navigation