Skip to main content
Log in

Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity

Dreidimensionale Analyse der initialen intraoralen Biofilmbildung auf Polytetrafluorethylen

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aim

There is published evidence that polytetrafluoroethylene (PTFE) exhibits beneficial surface characteristics by means of long-term biofilm accumulation. The purpose of this study was to investigate and compare early biofilm formation on polytetrafluoroethylene, ceramic-reinforced polytetrafluoroethylene and as the control group, stainless steel.

Materials and methods

This study comprised 10 healthy volunteers (5 females and 5 males) with a mean age of 27.3±3.7 years. Three different slabs (two PTFE coatings: one pure and one ceramic-reinforced polytetrafluoroethylene, and stainless steel) were placed in random order on a splint in the mandibular molar region. Intraoral splints were inserted for 48 h. After 48 h, we removed the slabs from the splints and stained the biofilm with a two-color fluorescence assay for bacterial viability (LIVE/DEAD BacLight—Bacterial Viability Kit 7012, Invitrogen, Mount Waverley, Australia). The amount of biofilm accumulation was assessed using confocal laser scanning microscopy (CLSM).

Results

The biofilm surface coverage was 55.8±39.8% on pure PTFE-coated probes, 55.9±35.0% on ceramic-reinforced PTFE-coated probes, and 33.3±37.8% on stainless steel. The differences among the three groups were not significant (p=0.301). Biofilm depth was 5.6±5.4 μm on pure PTFE-coated probes, 5.2±3.8 μm on ceramic-reinforced PTFE-coated probes, and 2.4±2.9 μm on stainless steel. The Friedman test revealed a significant difference in biofilm depth (p=0.002). Pairwise comparison of biofilm accumulation yielded a significant difference between pure PTFE and ceramic-reinforced PTFE compared to stainless steel (p=0.017; p=0.005).

Conclusion

Our results indicate that the beneficial surface characteristics of PTFE coatings by reducing long-term biofilm are not a result of inhibiting initial bacterial adhesion.

Zusammenfassung

Zielsetzung

Im Vergleich zu konventionellen kieferorthopädischen Materialien weist Polytetrafluorethylen (PTFE) eine erheblich reduzierte intraorale Langzeitbiofilmakkumulation auf. Ziel der vorgestellten Untersuchung war es, eine konventionelle und eine mechanisch optimierte PTFE-Beschichtung hinsichtlich der initialen Biofilmbildung unter In-vivo-Bedingungen zu vergleichen. Zusätzlich wurde eine Kontrollgruppe eingeführt, die den Materialeigenschaften von konventionell eingesetzten Stahlbrackets entsprach.

Material und Methodik

Drei Probekörper (reines PTFE, keramikverstärktes PTFE und Stahl) wurden in randomisierter Reihenfolge auf einer Miniplastschiene in der Molarenregion befestigt. Die Schienen wurden für einen Zeitraum von 48 h bei insgesamt zehn parodontal gesunden Probanden (5 Frauen und 5 Männer) mit einem Durchschnittsalter von 27,3±3,7 Jahren eingegliedert. Anschließend erfolgten eine Fluoreszenzmarkierung des Biofilms und die dreidimensionale Analyse des Biofilms mittels der konfokalen Laser-Scanning-Mikroskopie (CLSM).

Ergebnisse

Die prozentuale Biofilmbelegung betrug auf reinem PTFE 55,8±39,8%, auf keramikverstärktem PTFE 55,9±35,0% und auf Stahl 33,3±37,8%. Der globale Test zeigte für die prozentuale Biofilmbedeckung keine signifikanten Unterschiede (p=0,301). Die durchschnittliche Höhe des Biofilms betrug auf reinem PTFE 5,6±5,4 μm, auf keramikverstärktem PTFE 5,2±3,8 μm und auf Stahl 2,4±2,9 μm. Die Unterschiede erwiesen sich als statistisch signifikant (p=0,002). Der paarweise Vergleich zeigte eine signifikant geringere Höhe der Biofilmbildung auf den Stahlproben verglichen mit reinem und keramikverstärktem PTFE (p=0,0017; p=0,005).

Schlussfolgerungen

Im Hinblick auf die initiale Kolonisation scheint PTFE gegenüber Stahl eine erhöhte bakterielle Affinität aufzuweisen. Die in der Literatur beschriebene reduzierte Langzeitbiofilmbildung auf PTFE scheint daher nicht auf einer verminderten initialen bakteriellen Adhäsion zu beruhen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahn SJ, Lim BS, Lee SJ (2007) Prevalence of cariogenic streptococci on incisor brackets detected by polymerase chain reaction. Am J Orthod Dentofacial Orthop 131:736–741

    Article  PubMed  Google Scholar 

  2. Al Shamsi AH, Cunningham JL, Lamey PJ et al (2007) Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: an in-vitro study. Am J Orthod Dentofacial Orthop 131:301.e9–e15

    Google Scholar 

  3. Arweiler NB, Hellwig E, Sculean A et al (2004) Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res 38:442–447

    Article  PubMed  Google Scholar 

  4. Auschill TM, Arweiler NB, Brecx M et al (2002) The effect of dental restorative materials on dental biofilm. Eur J Oral Sci 110:48–53

    Article  PubMed  Google Scholar 

  5. Auschill TM, Hellwig E, Sculean A et al (2004) Impact of the intraoral location on the rate of biofilm growth. Clin Oral Invest 8:97–101

    Article  Google Scholar 

  6. Berezow AB, Darveau RP (2000) Microbial shift and periodontitis. Periodontol 55:36–47

    Article  Google Scholar 

  7. Berry JA, Biedlingmaier JF, Whelan PJ (2000) In vitro resistance to bacterial biofilm formation on coated fluoroplastic tympanostomy tubes. Otolaryngol Head Neck Surg 123:246–251

    Article  PubMed  Google Scholar 

  8. Bollen CM, Papaioannou W, Van Eldere J et al (1996) The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Implants Res 7:201–211

    Article  PubMed  Google Scholar 

  9. Darveau RP (2009) The oral microbial consortium’s interaction with the periodontal innate defense system. DNA Cell Biol 28:389–395

    Article  PubMed Central  PubMed  Google Scholar 

  10. Demling A, Elter C, Heidenblut T et al (2010) Reduction of biofilm on orthodontic brackets with the use of polytetrafluoroethylene coating. Eur J Orthod 32:414–418

    Article  PubMed  Google Scholar 

  11. Elter C, Heuer W, Demling A et al (2011) Comparative analysis of biofilm formation on dental implant abutments with respect to supra- and subgingival areas: polytetrafluoroethylene versus titanium. Int J Prosthodont 24:373–375

    PubMed  Google Scholar 

  12. Hannig M (1999) Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci 107:55–64

    Article  PubMed  Google Scholar 

  13. Lang NP, Adler R, Joss A et al (1990) Absence of bleeding on probing. An indicator of periodontal stability. J Clin Periodontol 17:714–721

    Article  PubMed  Google Scholar 

  14. Lee SM, Yoo SY, Kim HS et al (2005) Prevalence of putative periodontopathogens in subgingival dental plaque from gingivitis lesions in Korean orthodontic patients. J Microbiol 43:260–265

    PubMed  Google Scholar 

  15. Lo Bue AM, Di Marco R, Milazzo I et al (2008) Microbiological and clinical periodontal effects of fixed orthodontic appliances in pediatric patients. New Microbiol 3:299–302

    Google Scholar 

  16. Müller C, Lüders A, Hoth-Hannig W et al (2010) Initial bioadhesion on dental materials as a function of contact time, pH, surface wettability, and isoelectric point. Langmuir 26:4136–4141

    Article  PubMed  Google Scholar 

  17. Naranjo AA, Triviño ML, Jaramillo A et al (2006) Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am J Orthod Dentofacial Orthop 130:275.e17–e22

    Article  PubMed  Google Scholar 

  18. Netuschil L, Reich E, Unteregger G et al (1998) A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol 43:277–285

    Article  PubMed  Google Scholar 

  19. Ogaard B (1989) Prevalence of white spot lesions in 19-year-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofacial Orthop 96:423–427

    Article  PubMed  Google Scholar 

  20. Paolantonio M, di Girolamo G, Pedrazzoli V et al (1996) Occurrence of Actinobacillus actinomycetemcomitans in patients wearing orthodontic appliance. A cross-sectional study. J Clin Periodontol 23:112–118

    Article  PubMed  Google Scholar 

  21. Paolantonio M, Festa F, di Placido G et al (1999) Site-specific subgingival colonization by Actinobacillus actinomycetemcomitans in orthodontic patients. Am J Orthod Dentofacial Orthop 115:423–428

    Article  PubMed  Google Scholar 

  22. Quirynen M, Bollen CM, Papaioannou W et al (1996) The influence of titanium abutment surface roughness on plaque accumulation and gingivitis: short-term observations. Int J Oral Maxillofac Implants 11:169–178

    PubMed  Google Scholar 

  23. Ristic M, Vlahovic Svabic M, Sasic M et al (2007) Clinical and microbiological effects of fixed orthodontic appliances on periodontal tissues in adolescents. Orthod Craniofac Res 10:187–195

    Article  PubMed  Google Scholar 

  24. Rupp F, Axmann D, Ziegler C et al (2002) Adsorption/desorption phenomena on pure and Teflon AF-coated titania surfaces studied by dynamic contact angle analysis. J Biomed Mater Res 62:567–578

    Article  PubMed  Google Scholar 

  25. Sallum EJ, Nouer DF, Klein MI et al (2004) Clinical and microbiologic changes after removal of orthodontic appliances. Am J Orthod Dentofacial Orthop 126:363–366

    Article  PubMed  Google Scholar 

  26. Silness J, Löe H (1964) Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol Scand 22:121–135

    Article  PubMed  Google Scholar 

  27. Stratmann U, Schaarschmidt K, Wegener H et al (1996) The extent of enamel surface fractures. A quantitative comparison of thermally debonded ceramic and mechanically debonded metal brackets by energy dispersive micro- and image-analysis. Eur J Orthod 18:655–662

    PubMed  Google Scholar 

  28. Türkkahraman H, Sayin MO, Bozkurt FY et al (2005) Archwire ligation techniques, microbial colonization, and periodontal status in orthodontically treated patients. Angle Orthod 75:231–236

    PubMed  Google Scholar 

  29. van Gastel J, Quirynen M, Teughels W et al (2008) Longitudinal changes in microbiology and clinical periodontal variables after placement of fixed orthodontic appliances. J Periodontol 79:2078–2086

    Article  Google Scholar 

  30. van Gastel J, Quirynen M, Teughels W et al (2011) Longitudinal changes in microbiology and clinical periodontal parameters after removal of fixed orthodontic appliances. Eur J Orthod 33:15–21

    Article  Google Scholar 

  31. Wiechmann D (2002) A new bracket system for lingual orthodontic treatment. Part 1: theoretical background and development. J Orofac Orthop 63:234–245

    Article  PubMed  Google Scholar 

  32. Wiechmann D (2003) A new bracket system for lingual orthodontic treatment. Part 2: first clinical experiences and further development. J Orofac Orthop 64:372–388

    Article  PubMed  Google Scholar 

  33. Wiechmann D, Rummel V, Thalheim A et al (2003) Customized brackets and archwires for lingual orthodontic treatment. Am J Orthod Dentofacial Orthop 124:593–599

    Article  PubMed  Google Scholar 

  34. Wood SR, Kirkham J, Marsh PD et al (2000) Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79:21–27

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Professor Hartmut Hecker for his assistance with the statistical data analysis.

Danksagung

Die Autoren danken Prof. Dr. Hartmut Hecker für die Hilfe bei der statistischen Analyse der Daten.

Conflict of interest

C. Fuchslocher Hellemann, S. Grade, W. Heuer, M.P. Dittmer, M. Stiesch, R. Schwestka-Polly, and A.P. Demling state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Interessenkonflikt

C. Fuchslocher Hellemann, S. Grade, W. Heuer, M.P. Dittmer, M. Stiesch, R. Schwestka-Polly und A.P. Demling geben an, dass kein Interessenkonflikt besteht. Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.P. Demling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchslocher Hellemann, C., Grade, S., Heuer, W. et al. Three-dimensional analysis of initial biofilm formation on polytetrafluoroethylene in the oral cavity. J Orofac Orthop 74, 458–467 (2013). https://doi.org/10.1007/s00056-013-0174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-013-0174-8

Keywords

Schlüsselwörter

Navigation