Skip to main content
Log in

Biocompatibility of orthodontic bands following exposure to dental plaque

Biokompatibilität orthodontischer Bänder nach Plaqueexposition

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to assess the biocompatibility of orthodontic bands following exposure to the human oral environment.

Methods

Cell adherence and cell morphology of gingival fibroblasts grown on 32 orthodontic bands were tested. The bands were in place intraorally for 6 to 37 months.

Results

We observed cell adherence in 76% of the previously plaque-free surfaces. Cell morphology was 50% spherical and 50% elongated. The surfaces that had had plaque attached demonstrated cell adherence in 84% of the given areas; those cells were spherical in 42% and elongated in 58%.

Conclusion

We conclude that individual oral hygiene habits during orthodontic treatment seem to have no effect on the biocompatibility of orthodontic bands, as we failed to discern a difference in either cell adherence or cell morphology in areas with and without prior plaque attachment.

Zusammenfassung

Ziel

Ziel der Studie war, die Biokompatibilität orthodontischer Bänder nach Exposition im humanen oralen Milieu zu untersuchen.

Methode

Nach einer intraoralen Verweildauer von 6 bis 37 Monaten wurden die Zellanhaftung und die Zellmorphologie auf 32 orthodontischen Bändern untersucht.

Ergebnisse

Auf 76% der ehemals plaquefreien Oberflächen konnte eine Zellbesiedelung festgestellt werden. Die Morphologie der Zellen war zu 50% rund, zu 50% spindelförmig. Auf den ehemals plaquebesiedelten Oberflächen konnte sogar in 84% der gewählten Areale eine Zellbesiedelung festgestellt werden. In 42% der Fälle wurden runde Zellen beobachtet, während in 58% spindelförmige Morphologien auftraten.

Schlussfolgerung

Da sowohl bei ehemals plaquefreien als auch plaquebesiedelten Oberflächen kein signifikanter Unterschied in der Zellbesiedelung sowie der Zellmorphologie gefunden werden konnte, darf man annehmen, dass die Exposition im Mund des Patienten bei unterschiedlichen Hygieneverhältnissen keinen Einfluss auf die Biokompatibilität orthodontischer Bänder nimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Att W, Yamada M, Ogawa T (2009) Effect of titanium surface characteristics on the behavior and function of oral fibroblasts. Int J Oral Maxillofac Implants 24:419–431

    PubMed  Google Scholar 

  2. Baxter LC, Frauchiger V, Textor M et al (2002) Fibroblast and osteoblast adhesion and morphology on calcium phosphate surfaces. Eur Cell Mater 30:1–17

    Google Scholar 

  3. Bayramoğlu G, Alemdaroğlu T, Kedici S et al (2000) The effect of pH on the corrosion of dental metal alloys. J Oral Rehabil 27:563–575

    Article  PubMed  Google Scholar 

  4. Cortizo MC, De Mele MF, Cortizo AM (2004) Metallic dental material biocompatibility in osteoblastlike cells: correlation with metal ion release. Biol Trace Elem Res 100:151–168

    Article  PubMed  Google Scholar 

  5. Craig RG, Hanks CT (1990) Cytotoxicity of experimental casting alloys evaluated by cell culture tests. J Dent Res 69:1539–1542

    Article  PubMed  Google Scholar 

  6. den Braber ET, Jansen HV, Boer MJ de et al (1998) Scanning electron microscopic, transmission electron microscopic, and confocal laser scanning microscopic observation of fibroblasts cultured on microgrooved surfaces of bulk titanium substrata. J Biomed Mater Res A 40:425–433

    Article  Google Scholar 

  7. Demling A, Elter C, Heidenblut T et al (2010) Reduction of biofilm on orthodontic brackets with the use of a polytetrafluoroethylene coating. Eur J Orthod 32:414–418

    Article  PubMed  Google Scholar 

  8. Demling A, Heuer W, Elter C et al (2010) Analysis of supra- and subgingival long-term biofilm formation on orthodontic bands. Eur J Orthod 31:202–206

    Article  Google Scholar 

  9. Eisenbarth E, Linez P, Biehl V et al (2002). Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol Eng 19:233–237

    Article  PubMed  Google Scholar 

  10. Eliades T, Pratsinis H, Kletsas D et al (2004) Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dentofacial Orthop 125:24–29

    Article  PubMed  Google Scholar 

  11. Elshahawy W, Watanabe I, Koike M (2009) Elemental ion release from four different fixed prosthodontic materials. Dent Mater 25:976–981

    Article  PubMed  Google Scholar 

  12. Geurtsen W (2002) Biocompatibility of dental casting alloys. Crit Rev Oral Biol Med 13:71-84

    Article  PubMed  Google Scholar 

  13. Grimsdottir MR, Hensten-Pettersen A, Kullmann A (1992) Cytotoxic effect of orthodontic appliances. Eur J Orthod 14:47–53

    PubMed  Google Scholar 

  14. Groessner-Schreiber B, Neubert A, Müller WD et al (2003) Fibroblast growth on surface-modified dental implants: an in vitro study. J Biomed Mater Res A 64:591–599

    Article  PubMed  Google Scholar 

  15. Hamdan M, Blanco L, Khraisat A et al (2006) Influence of titanium surface charge on fibroblast adhesion. Clin Implant Dent Relat Res 8:32–38

    Article  PubMed  Google Scholar 

  16. Johansson BI, Lucas LC, Lemons JE (1989) Corrosion of copper, nickel and gold dental casting alloys: in vitro and in vivo study. J Biomed Mater Res A 23:349–361

    Article  Google Scholar 

  17. Kedici SP, Aksüt AA, Kílíçarslan MA et al (1998) Corosion behaviour of dental metals and alloys in different media. J Oral Rehabil 25:800–808

    Article  PubMed  Google Scholar 

  18. Kim H, Murakami H, Chehroudi B et al (2006) Effects of surface topography on the connective tissue attachment to subcutaneous implants. Int J Oral Maxillofac Implants 21:354–365

    PubMed  Google Scholar 

  19. Kriparamanan R, Aswath P, Zhou A et al (2006) Nanotopography: cellular responses to nanostructured materials. J Nanosci Nanotechnol 6:1905–1919

    Article  PubMed  Google Scholar 

  20. Lee SW, Kim SY, Lee MH et al (2009) Influence of etched microgrooves of uniform dimension on in vitro responses of human gingival fibroblasts. Clin Oral Implants Res 20:458–466

    Article  PubMed  Google Scholar 

  21. Lekic P, Rojas J, Birek C et al (2001) Phenotypic comparison of periodontal ligament cells in vivo and in vitro. J Periodontal Res 36:71–79

    Article  PubMed  Google Scholar 

  22. Locci P, Lilli C, Marinucci L et al (2000) In vitro cytotoxic effects of orthodontic appliances. J Biomed Mater Res 53:560–567

    Article  PubMed  Google Scholar 

  23. Loesberg WA, te Riet J, Delft FC van et al (2007) The threshold at which substrate nanogroove dimensions may influence fibroblast alignment and adhesion. Biomaterials 28:3944–3951

    Article  PubMed  Google Scholar 

  24. Lucas LC, Lemons JE (1992) Biodegradation of restorative metallic systems. Adv Dent Res 6:32–37

    PubMed  Google Scholar 

  25. Luft S, Keilig L, Jäger A et al (2009) In-vitro evaluation of the corrosion behavior of orthodontic brackets. Orthod Craniofac Res 12:43–51

    Article  PubMed  Google Scholar 

  26. Marinucci L, Balloni S, Becchetti E et al (2006) Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int J Oral Maxillofac Implants 21:719–725

    PubMed  Google Scholar 

  27. Messer RL, Bishop S, Lucas LC (1999). Effects of metallic ion toxicity on human gingival fibroblasts morphology. Biomaterials 20:1647–1657

    Article  PubMed  Google Scholar 

  28. Messer RL, Lucas LC (2002) Localization of metallic ions with gingival fibroblast subcellular fractions. J Biomed Mater Res 59:466–472

    Article  PubMed  Google Scholar 

  29. Mockers O, Deroze D, Camps J (2002) Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent Mater 18:311–317

    Article  PubMed  Google Scholar 

  30. Mustafa K, Odén A, Wennerberg A et al (2005) The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials 26:373–381

    Article  PubMed  Google Scholar 

  31. Popa MV, Vasilescu E, Drob P et al (2008) Long-term assessment of the implant titanium material–artificial saliva interface. J Mater Sci Mater Med 19:1–9

    Article  PubMed  Google Scholar 

  32. Quirynen M, Bollen CM (1995) The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 22:1–14

    Article  PubMed  Google Scholar 

  33. Ryhänen J, Niemi E, Serlo W et al (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures. J Biomed Mater Res 35:451–457

    Article  PubMed  Google Scholar 

  34. Wataha JC, Hanks CT, Sun Z (1994) Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater 10:156–161

    Article  PubMed  Google Scholar 

  35. Wieland M, Chehroudi B, Textor M et al (2002) Use of Ti-coated replicas to investigate the effects on fibroblast shape of surfaces with varying roughness and constant chemical composition. J Biomed Mater Res 60:434–444

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank Dr. Ralph Kastenholz for his contribution in obtaining the data for this evaluation.

Danksagung

Wir bedanken uns bei Dr. Ralph Kastenholz für seine Mitwirkung bei der Erhebung der Daten für diese Untersuchung.

Conflict of interest

None declared.

Interessenskonflikt

Keine Angaben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hornikel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornikel, S., Erbe, C., Schmidtmann, I. et al. Biocompatibility of orthodontic bands following exposure to dental plaque. J Orofac Orthop 72, 133–140 (2011). https://doi.org/10.1007/s00056-011-0016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-011-0016-5

Keywords

Schlüsselwörter

Navigation