Skip to main content
Log in

Bedeutung der PET für die Chirurgie des gastrointestinalen Stromatumors

Importance of PET for surgery of gastrointestinal stromal tumors

  • Übersichten
  • Published:
coloproctology Aims and scope

Zusammenfassung

Hintergrund

Gastrointestinale Stromatumoren (GIST) sind die häufigste mesenchymale Neoplasie des Gastrointestinaltraktes. Sie unterscheiden sich hinsichtlich Tumorbiologie, Behandlungsstrategie und insbesondere Indikationsstellung zum chirurgischen Vorgehen in wesentlichen Aspekten von gastrointestinalen Karzinomen. Jeder an der Behandlung von GIST beteiligte Chirurg sollte mit diesen Aspekten vertraut sein.

Ziel der Arbeit

In dieser Arbeit wird der Stellenwert der Positronenemissionstomographie (PET) in der chirurgischen Behandlung von Patienten mit GIST diskutiert und ein Ausblick auf die Entwicklung von auf GIST maßgeschneiderten molekularen Tracern gegeben.

Ergebnisse

In verschiedenen klinischen Szenarien ist die PET eine wertvolle Hilfe für die Therapieplanung und insbesondere chirurgische Indikationsstellung in der multimodalen Behandlung von GIST. Hervorzuheben sind das Primärstaging, das Monitoring unter neoadjuvanter Therapie sowie das Staging und die Verlaufskontrolle in der metastasierten Situation. Der routinemäßig eingesetzte Tracer ist 18F-FDG, der zuverlässig den Metabolismus von GIST-Läsionen abbildet. Verglichen mit Computertomographie/Magnetresonanztomographie erlaubt das 18F-FDG-PET häufig eine frühere und genauere Responsebeurteilung. GIST-spezifische molekulare Tracer, die eine direkte Prognose zum Therapieansprechen und frühzeitige Informationen zur Resistenzentwicklung liefern könnten, befinden sich in der präklinischen Entwicklung. Hier sind aber noch pharmakokinetische und immunologische Hürden zu überwinden. Fernziel ist die Entwicklung von „theranostics“, also Substanzen, die zugleich diagnostische und therapeutische Zwecke erfüllen.

Diskussion

In der multimodalen Therapie von GIST und der Indikationsstellung zum chirurgischen Vorgehen hat die PET einen festen Stellenwert.

Abstract

Background

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm of the digestive tract. The GIST differ substantially from gastrointestinal carcinomas regarding tumor biology, treatment strategies and indications for surgery. Every surgeon involved in the treatment of GIST should be acquainted with these aspects.

Objectives

The aims of this article are to discuss the value of positron emission tomography (PET) in the surgical treatment of patients with GIST and to provide an outlook on the development of molecular tracers specifically tailored for GIST.

Results

PET is an invaluable decision aid in the multimodal therapy of GIST and particularly for deciding on surgical indications. Specific scenarios in which PET is used are primary staging monitoring during neoadjuvant therapy and staging and response assessment in the metastatic setting. The routinely used tracer is 18F-fluorodeoxyglucose (18F-FDG) and uptake reliably correlates with the metabolism of GIST lesions. Compared to computed tomography and magnetic resonance imaging (CT/MRI), 18F-FDG-PET often allows a more timely and accurate response assessment. GIST-specific molecular tracers, which could provide a direct prognosis regarding response and development of resistance to treatment, are currently in preclinical development. However, pharmacokinetic and immunological issues still need to be resolved. A distant aim is the development of “theranostics”, i.e. substances which serve both diagnostic and therapeutic purposes.

Discussion

PET has an established value in the multimodal treatment of GIST and is particularly useful for deciding on surgical indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. NCCN clinical practice guidelines in oncology – soft tissue sarcoma. http://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf

  2. Abuzakhm SM, Acre-Lara CE, Zhao W et al (2011) Unusual metastases of gastrointestinal stromal tumor and genotypic correlates: case report and review of the literature. J Gastrointest Oncol 2:45–49

    PubMed Central  PubMed  Google Scholar 

  3. Ahmadzadehfar H, Biersack HJ, Ezziddin S (2010) Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med 40:105–121

    Article  PubMed  Google Scholar 

  4. Apostolopoulos DJ, Dimitrakopoulou-Strauss A, Hohenberger P et al (2011) Parametric images via dynamic 18F-fluorodeoxyglucose positron emission tomographic data acquisition in predicting midterm outcome of liver metastases secondary to gastrointestinal stromal tumours. Eur J Nucl Med Mol Imaging 38:1212–1223

    Article  PubMed  Google Scholar 

  5. Asakawa C, Ogawa M, Kumata K et al (2011) [11C]sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice. Bioorg Med Chem Lett 21:2220–2223

    Article  CAS  PubMed  Google Scholar 

  6. Benezra M, Hambardzumyan D, Penate-Medina O et al (2012) Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 14:1132–1143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Blanke CD, Demetri GD, Mehren M von et al (2008) Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol 26:620–625

    Article  CAS  PubMed  Google Scholar 

  8. Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    Article  PubMed  Google Scholar 

  9. DeMatteo RP, Lewis JJ, Leung D et al (2000) Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 231:51–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. DeMatteo RP, Maki RG, Singer S et al (2007) Results of tyrosine kinase inhibitor therapy followed by surgical resection for metastatic gastrointestinal stromal tumor. Ann Surg 245:347–352

    Article  PubMed Central  PubMed  Google Scholar 

  11. Demetri GD, Mehren M von, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  CAS  PubMed  Google Scholar 

  12. Dimitrakopoulou-Strauss A, Hohenberger P, Haberkorn U et al (2007) 68Ga-labeled bombesin studies in patients with gastrointestinal stromal tumors: comparison with 18F-FDG. J Nucl Med 48:1245–1250

    Article  CAS  PubMed  Google Scholar 

  13. Dimitrakopoulou-Strauss A, Pan L, Strauss LG (2012) Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging 12:283–289

    Article  PubMed Central  PubMed  Google Scholar 

  14. Duensing S, Duensing A (2010) Targeted therapies of gastrointestinal stromal tumors (GIST) – the next frontiers. Biochem Pharmacol 80:575–583

    Article  CAS  PubMed  Google Scholar 

  15. Eisenberg BL, Harris J, Blanke CD et al (2009) Phase II trial of neoadjuvant/adjuvant imatinib mesylate (IM) for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumor (GIST): early results of RTOG 0132/ACRIN 6665. J Surg Oncol 99:42–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fiore M, Palassini E, Fumagalli E et al (2009) Preoperative imatinib mesylate for unresectable or locally advanced primary gastrointestinal stromal tumors (GIST). Eur J Surg Oncol 35:739–745

    Article  CAS  PubMed  Google Scholar 

  17. Glekas AP, Pillarsetty NK, Punzalan B et al (2011) In vivo imaging of Bcr-Abl overexpressing tumors with a radiolabeled imatinib analog as an imaging surrogate for imatinib. J Nucl Med 52:1301–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  CAS  PubMed  Google Scholar 

  19. Hohenberger P, Ronellenfitsch U, Oladeji O et al (2010) Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg 97:1854–1859

    Article  CAS  PubMed  Google Scholar 

  20. Joensuu H, Fletcher C, Dimitrijevic S et al (2002) Management of malignant gastrointestinal stromal tumours. Lancet Oncol 3:655–664

    Article  CAS  PubMed  Google Scholar 

  21. Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    Article  CAS  PubMed  Google Scholar 

  22. Jones RL, McCall J, Adam A et al (2010) Radiofrequency ablation is a feasible therapeutic option in the multi modality management of sarcoma. Eur J Surg Oncol 36:477–482

    Article  CAS  PubMed  Google Scholar 

  23. Kindblom LG, Remotti HE, Aldenborg F et al (1998) Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152:1259–1269

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Koukouraki S, Strauss LG, Georgoulias V et al (2006) Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur J Nucl Med Mol Imaging 33:1115–1122

    Article  CAS  PubMed  Google Scholar 

  25. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83

    Article  PubMed  Google Scholar 

  26. Mussi C, Ronellenfitsch U, Jakob J et al (2010) Post-imatinib surgery in advanced/metastatic GIST: is it worthwhile in all patients? Ann Oncol 21:403–408

    Article  CAS  PubMed  Google Scholar 

  27. Park JW, Cho CH, Jeong DS et al (2011) Role of F-fluoro-2-deoxyglucose positron emission tomography in gastric GIST: predicting malignant potential pre-operatively. J Gastric Cancer 11:173–179

    Article  PubMed Central  PubMed  Google Scholar 

  28. Raut CP, Posner M, Desai J et al (2006) Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J Clin Oncol 24:2325–2331

    Article  CAS  PubMed  Google Scholar 

  29. Slobbe P, Poot AJ, Windhorst AD et al (2012) PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov Today 17:1175–1187

    Article  CAS  PubMed  Google Scholar 

  30. Sogawa C, Tsuji AB, Sudo H et al (2010) C-kit-targeted imaging of gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in a mouse tumor model. Nucl Med Biol 37:179–187

    Article  CAS  PubMed  Google Scholar 

  31. Stacchiotti S, Collini P, Messina A et al (2009) High-grade soft-tissue sarcomas: tumor response assessment – pilot study to assess the correlation between radiologic and pathologic response by using RECIST and Choi criteria. Radiology 251:447–456

    Article  PubMed  Google Scholar 

  32. The ESMO/European Sarcoma Network Working Group (2012) Gastrointestinal stromal tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23(Suppl 7):49–55

    Article  Google Scholar 

  33. Treglia G, Mirk P, Stefanelli A et al (2012) 18F-Fluorodeoxyglucose positron emission tomography in evaluating treatment response to imatinib or other drugs in gastrointestinal stromal tumors: a systematic review. Clin Imaging 36:167–175

    Article  PubMed  Google Scholar 

  34. Wang JQ, Miller KD, Sledge GW et al (2005) Synthesis of [18F]SU11248, a new potential PET tracer for imaging cancer tyrosine kinase. Bioorg Med Chem Lett 15):4380–4384

    Article  CAS  PubMed  Google Scholar 

  35. Wardelmann E, Buttner R, Merkelbach-Bruse S et al (2007) Mutation analysis of gastrointestinal stromal tumors: increasing significance for risk assessment and effective targeted therapy. Virchows Arch 451:743–749

    Article  PubMed  Google Scholar 

  36. Wardelmann E, Merkelbach-Bruse S, Pauls K et al (2006) Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 12:1743–1749

    Article  CAS  PubMed  Google Scholar 

  37. West RB, Corless CL, Chen X et al (2004) The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 165:107–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Yoshikawa K, Shimada M, Kurita N et al (2013) The efficacy of PET-CT for predicting the malignant potential of gastrointestinal stromal tumors. Surg Today 43:1162–1167

    Article  CAS  PubMed  Google Scholar 

  39. Young H, Baum R, Cremerius U et al (1999) Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer 35:1773–1782

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. U. Ronellenfitsch, B. Wängler, S. Niedermoser, A. Dimitrakopoulou-Strauss, P. Hohenberger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hohenberger.

Additional information

Dieser Beitrag wurde erstpubliziert in Chirurg (2014) 85:493–499.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronellenfitsch, U., Wängler, B., Niedermoser, S. et al. Bedeutung der PET für die Chirurgie des gastrointestinalen Stromatumors. coloproctology 37, 170–176 (2015). https://doi.org/10.1007/s00053-015-0525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00053-015-0525-6

Schlüsselwörter

Keywords

Navigation