Skip to main content
Log in

Attraction of Pissodes castaneus (Coleoptera, Curculionidae) to Pinus taeda: laboratory and field evaluation

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Coniferous trees of the genus Pinus (Pinaceae) are under continuous threats by numerous herbivorous insect species and pathogens attacking nearly all parts and tissues of the plants. To defend themselves, pine trees produce large amounts of oleoresin that is accumulated in a highly developed network of specialized resin ducts, which are distributed in the wood, bark, and needles. Such defense reactions in pines can be induced by the attack of herbivores. The banded pine weevil, Pissodes castaneus (De Geer, 1775) (Coleoptera, Curculionidae), is an important pest of Pinus in Brazil, where it has been an invasive species since 2001. The female lays its eggs under the tree bark of trees and the larvae feed in the phloem of the trunk and branches, interrupting the sap circulation and eventually causing its death. In the present study, we conducted detailed GC–MS analyses of volatiles emitted by twigs of Pinus taeda L. We analyzed how the attack by P. castaneus males and females affects the volatile pattern emitted by the twigs. When comparing volatiles produced by healthy plants and by female- and male-attacked P. taeda, qualitative and quantitative differences were detected, as the decreased production of limonene, germacrene D and (E)-caryophyllene and the increase of α-pinene. Laboratory bioassays showed that plants attacked by male and female P. castaneus were more attractive to the insects. Understanding about what compounds may attract or repel the insects may help in the development of more effective traps, as well as preventing stress to avoid infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The authors declare the availability of data in the supplementary section of the manuscript.

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass espectrometry. Allured Publishing Corporation, Illinois

    Google Scholar 

  • Ahrens S (2000) Manejo e Silvicultura de Plantações de Pinus na Pequena Propriedade Rural. In: Galvão APM (ed) Reflorestamento de Propriedades Rurais Para Fins Produtivos e Ambientais: Um Guia Para Ações Municipais e Regionais. Embrapa Comunicação para Transferência de Tecnologia, Brasília, p 219

  • Alin L, Sundberg U (2003) Statistical Yearbook of Sweden 2003. Statistics Sweden, Örebro, Sweden

  • Alquézar B, Volpe HXL, Magnani RF et al (2017) β-caryophyllene emitted from a transgenic Arabidopsis or chemical dispenser repels Diaphorina citri, vector of Candidatus Liberibacters. Sci Rep 7:5639. https://doi.org/10.1038/s41598-017-06119-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arimura G, Pearse IS (2017) Chapter one—From the lab bench to the forest: ecology and defence mechanisms of volatile-mediated ‘talking trees.’ In: Becard G (ed) Advances in botanical research. Academic Press, pp 3–17

    Google Scholar 

  • Ayres M, Ayres Jr. M, Ayres DL, Santos A de AS dos (2007) BioEstat 5.0

  • Barnola LF, Masahisa H, Cedeño A (1994) Mono- and sesquiterpene variation in Pinus caribaea needles and its relationship to Atta laevigata herbivory. Biochem Sys Ecol 22:437–445

    Article  CAS  Google Scholar 

  • Bedard WD, Tilden PE, Wood DL et al (1969) Western pine beetle: field response to its sex pheromone and a synergistic host terpene, myrcene. Science 164:1284–1285. https://doi.org/10.1126/science.164.3885.1284

    Article  CAS  PubMed  Google Scholar 

  • Bedini S, Flamini G, Girardi J et al (2004) (2015) Not just for beer: evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods. J Pest Sci 88:583–592. https://doi.org/10.1007/s10340-015-0647-1

    Article  Google Scholar 

  • Bichao H, Borg-Karlson A-KK, Araújo J et al (2003) Identification of plant odours activating receptor neurones in the weevil Pissodes notatus F. (Coleoptera, Curculionidae). J Comp Physiol A 189:203–212. https://doi.org/10.1007/s00359-003-0391-5

    Article  CAS  Google Scholar 

  • Blackmer JL, Rodriguez-Saona C, Byers JA, et al (2004) behavioral response of lygus hesperus to conspecifics and headspace volatiles of alfalfa in a y-tube olfactometer

  • Bougherra HH, Bedini S, Flamini G et al (2015) Pistacia lentiscus essential oil has repellent effect against three major insect pests of pasta. Ind Crops Prod 63:249–255. https://doi.org/10.1016/j.indcrop.2014.09.048

    Article  CAS  Google Scholar 

  • Cadahia D, Romanyk N, Spain. (1992) Plagas de insectos en las masas forestales españolas. 272 p.

  • Cardoso JTT, Lázzari SMN (2003) Comparative biology of Cycloneda sanguinea (Linnaeus, 1763) and Hippodamia convergens Guérin-Méneville, 1842 (Coleoptera, Coccinellidae) focusing on the control of Cinara spp. (Hemiptera, Aphididae). Rev Bras Entomol 47:443–446

    Article  Google Scholar 

  • Chiu CC, Keeling CI, Bohlmann J (2017) Toxicity of pine monoterpenes to mountain pine beetle. Sci Rep 7:8858. https://doi.org/10.1038/s41598-017-08983-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW et al (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Dias PC, Xavier A, de Resende MDV et al (2018) Genetic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environment interaction. Crop Breed Appl Biotechnol 18:55–64. https://doi.org/10.1590/1984-70332018v18n1a8

    Article  Google Scholar 

  • Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol Exp Appl 97:237–249

    Article  CAS  Google Scholar 

  • El-Shafie HAF, Faleiro JR (2017) Semiochemicals and Their Potential Use in Pest Management. In: Shields VDC (ed) Biological Control of Pest and Vector Insects. InTech, Rijeka, p Ch. 01

  • Faldt J, Martin D, Miller B et al (2003) Traumatic resin defense in Norway spruce (Picea abies): Methyl jasmonate-induced terpen synthase gene expression, and cDNA cloning and functional characterization of (+)- 3-carene synthase. Plant Mol Biol 51:119–133

    Article  PubMed  Google Scholar 

  • Fitzgerald TD (2003) Role of trail pheromone in foraging and processionary behavior of pine processionary caterpillars thaumetopoea pityocampa. J Chem Ecol 29:513–532

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586

    Article  CAS  PubMed  Google Scholar 

  • Grez OR, Fontecilla LF, Nunez RA, et al (2000) Manual de plagas cuarentenárias potencialmente daninas para o Chile com especial énfasis em plantaciones de pino y eucalipto. Chile

  • Hilker M, Stein C, Schröder R et al (2005) Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. J Exp Biol 208:1849–1854. https://doi.org/10.1242/jeb.01578

    Article  PubMed  Google Scholar 

  • Iede ET, Penteado SRC et al (2004) Ocorrência de Pissodes castaneus (De Geer) (Coleoptera: Curculionidae) em Pínus, na Região Sul do Brasil. Comunicado Técnico: Embrapa Floresta 114:1–6

    Google Scholar 

  • Judžentienė A, Slizyte J, Stikliene A et al (2006) Characteristics of essential oil composition in the needles of young Scots pine (Pinus sylvestris L.) stands growing along an aerial ammonia gradient. Chemija 17:67–73

    Google Scholar 

  • Keeling Christopher I, Bohlmann J, Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity In the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675. https://doi.org/10.1111/j.1469-8137.2006.01716.x

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kupcinskiene E, Stikliene A, Judzentiene A (2008) The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Environ Pollut 155:481–491

    Article  CAS  PubMed  Google Scholar 

  • Langenheim JH (2003) Plant resins: chemistry, evolution, ecology, and ethnobotany. Timber Press, Portland

    Google Scholar 

  • Lewinsohn E, Gijzen M, Croteau R (1991) Defense mechanisms of conifers: differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol 96:44–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusebrink I, Erbilgin N, Evenden ML (2016) The effect of water limitation on volatile emission, tree defense response, and brood success of dendroctonus ponderosae in two pine hosts, lodgepole, and jack pine. Front Ecol Evol 4:2

    Article  Google Scholar 

  • Marques FA, Zaleski SRM, Lazzari SMN et al (2011) Identification of (1R, 2S)-Grandisal and (1R, 2S)-Grandisol in. J Braz Chem Soc 22:1050–1055

    Article  CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce (Picea abies). Plant Physiol 132:1586–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick AC, Reinecke A, Gershenzon J, Unsicker SB (2016) Feeding experience affects the behavioral response of polyphagous gypsy moth caterpillars to herbivore-induced poplar volatiles. J Chem Ecol 42:382–393. https://doi.org/10.1007/s10886-016-0698-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay SAB, Hunter WL, Godard K-A et al (2003) Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka Spruce. Plant Physiol 133:368–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and putative octadecanoid pathway transcripts in sitka spruce. Plant Physiol 137:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumm R, Schrank KAI, Wegener R et al (2003) Chemical analysis of volatiles emitted by pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Tiemann T, Schulz S, Hilker M (2004) Analysis of volatiles from black pine (Pinus nigra): significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry 65:3221–3230

    Article  CAS  PubMed  Google Scholar 

  • Nadir E, Raffa KF (2001) Modulation of predator attraction to pheromones of two prey species by stereochemistry of plant volatiles. Oecologia 127:444–453

    Article  Google Scholar 

  • Nagy NE, Franceschi VR, Solheim H et al (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. Am J Bot 87:302–313

    Article  CAS  PubMed  Google Scholar 

  • Nault JR, Alfaro RI (2001) Changes in cortical and wood terpenes in sitka spruce in response to wounding. J for Res 31:1561–1568

    CAS  Google Scholar 

  • Nordlander G (1990) Limonene inhibits attraction to 〈-pinene in the pine weevils Hylobius abietis and H. pinastri. J Chem Ecol 16:1307–1320

    Article  CAS  PubMed  Google Scholar 

  • Nordlander G (1991) Host finding in the pine weevil Hylobius abietis—effects of conifer volatiles and added limonene. Entomol Exp Appl 59:229–237

    Article  Google Scholar 

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220. https://doi.org/10.1007/BF00987744

    Article  Google Scholar 

  • Panzavolta T, Tiberi R (2010) Observations on the life cycle of Pissodes castaneus in central Italy. Bull Insectology 63:45–50

    Google Scholar 

  • Phillips MA, Croteau R (1999) Resin-based defenses in conifers. Trends Plants Sci 4:184–190

    Article  CAS  Google Scholar 

  • Sadof CS, Grant GG (1997) Monoterpene compostion of Pinus sylvestris varieties resistant and susceptible to Dioryctria zimmermani. J Chem Ecol 23:1917–1927. https://doi.org/10.1023/B:JOEC.0000006479.39087.60

    Article  CAS  Google Scholar 

  • Skrzecz I, Wolski R, Sowinska A et al (2019) Evaluation of attractants and traps for monitoring small banded pine weevil Pissodes castaneus. J Appl Entomol. https://doi.org/10.1111/jen.12610

    Article  Google Scholar 

  • Smith RH (1965) Effect of Monoterpene Vapors on the Western Pine Beetle. J Econ Entomol 58:509–510

    Article  CAS  Google Scholar 

  • Sullivan BT, Berisford CW (2004) Semiochemicals from fungal associates of bark beetles may mediate host location behavior of parasitoids. J Chem Ecol 30:703–717. https://doi.org/10.1023/B:JOEC.0000028426.37482.17

    Article  CAS  PubMed  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354

    Article  CAS  PubMed  Google Scholar 

  • Tilles DA, Nordlander G, Nordenhem H et al (1986) Increased release of host volatiles from feeding scars—a major cause of field aggregation in the pine weevil Hylobius abietis (Coleoptera, Curculionidae). Environ Entomol 15:1050–1054

    Article  CAS  Google Scholar 

  • Tomlin ES, Alfaro RI, Borden JH, He FL (1998) Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol 18:21–28

    Article  PubMed  Google Scholar 

  • Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Ann Rev Plant Phys Plant Mol Biol 52:689–724

    Article  CAS  Google Scholar 

  • Werner RA (1995) Toxicity and Repellency of 4–Allylanisole and monoterpenes from white spruce and tamarack to the spruce beetle and eastern larch beetle (Coleoptera: Scolytidae). Environ Entomol 24:372–379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-INCT “Controle Biorracional de Insetos Praga”) and Fundação Araucária for financial support.

Funding

This work was supported by Fundação Araucária and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

Gustavo Frensch, Scheila R. M. Zaleski, Francisco A. Marques, Beatriz H. L. N. S. Maia and Sonia M. N. Lazzari contributed to the study conception and design. Material preparation, data collection and analysis were performed by Gustavo Frensch, Scheila R. M. Zaleski and Marina Krasniak. Statistical analysis was perfomed by Gustavo Frensch and Liliane G. Dantas. The first draft of the manuscript was written by Gustavo Frensch and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gustavo Frensch.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Günther Raspotnig.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frensch, G., Zaleski, S.R.M., Schorr, R.R. et al. Attraction of Pissodes castaneus (Coleoptera, Curculionidae) to Pinus taeda: laboratory and field evaluation. Chemoecology 33, 45–54 (2023). https://doi.org/10.1007/s00049-023-00383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-023-00383-1

Keywords

Navigation