Skip to main content
Log in

Volatile and semi-volatile terpenes impact leaf flammability: differences according to the level of terpene identification

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

In flammability assessment, the terpene effect is usually studied using their total or subgroup content, missing, therefore, the information that could be provided by the molecules themselves. In this study, the specific role of terpenes on leaf flammability was sought comparing different levels of terpene identification—total, subgroup (i.e. mono-, sesqui-, and diterpene), and single compound—as well as their interactions with fuel moisture content (FMC) in four species common in Mediterranean Wildland–Urban Interfaces (Pinus halepensis, Cupressocyparis leylandii, Hesperocyparis arizonica, Cupressus sempervirens). Pinus halepensis was the most flammable species (low FMC and higher sesquiterpene content but low terpene diversity) while Cupressocyparis leylandii presented the highest terpene diversity and total terpene content (higher mono- and diterpene content). Flammability was differently affected according to the terpene identification level used in the models. The effects ranged from non-significant for most species studied, using subgroup or total terpene content, to mostly significant, using single compound content. Regarding the former, the lack of significant results could be due to opposite effects of different single compounds within a terpene subgroup. For the latter, terpene molecules driving flammability and their effects (positive or negative) differed among species. A cumulative effect with FMC was also highlighted in some cases but terpenes mostly remained the main flammability drivers regardless of the species. Using the refined terpene level in modelling allowed a better understanding of the compounds’ role on flammability, which is useful in the identification of plant traits linked to flammability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Data for this manuscript are accessible at the Dryad Digital Repository.

Notes

  1. The terpene content is calculated averaging the content of the five replicates sampled per species.

References

  • Achotegui-Castells A, Danti R, Llusià J, Della Rocca G, Barberini S, Peñuelas J (2015) Strong induction of minor terpenes in Italian Cypress, Cupressus sempervirens, in response to infection by the fungus Seiridium cardinale. J Chem Ecol 41:224–243

    Article  CAS  PubMed  Google Scholar 

  • Adams R (2007) Identification of essential oils by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Alessio G, Peñuelas J, Llusià J, Ogaya R, Estiarte M, De Lillis M (2008a) Influence of water and terpenes on flammability in some dominant Mediterranean species. Int J Wildland Fire 17:274–286

    Article  CAS  Google Scholar 

  • Alessio GA, Penuelas J, De Lillis M, Llusia J (2008b) Implications of foliar terpene content and hydration on leaf flammability of Quercus ilex and Pinus halepensis. Plant Biol 10:123–128

    Article  CAS  PubMed  Google Scholar 

  • Barboni T, Cannac M, Leoni E, Chiaramonti N (2011) Emission of biogenic volatile organic compounds involved in eruptive fire: implications for the safety of firefighters. Int J Wildland Fire 20:152–161

    Article  CAS  Google Scholar 

  • Barton AM, Poulos HM (2019) Response of Arizona cypress (Hesperocyparis arizonica) to the Horseshoe two Megafire in a south-eastern Arizona Sky Island mountain range. Int J Wildland Fire 28:62–69

    Article  Google Scholar 

  • Bernard-Degan C (1988) Seasonal variations in energy sources and biosynthesis of terpenoids in maritime pine. In: Mattson WJ, Levieux J, Bernard-Degan C (eds) Mechanisms of woody plant defenses against insects. Springer, New York, pp 93–116

    Chapter  Google Scholar 

  • Blanch J-S, Peñuelas J, Sardans J, Llusià J (2009) Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex. Acta Physiol Plant 31:207–218

    Article  CAS  Google Scholar 

  • Castro MA, De Magistris AA (1999) Ultrastructure of foliar secretory cavity in Hesperocyparis arizonica var. glabra (Sudw.) Little (Cupressaceae). Biocell 23:19–28

    Google Scholar 

  • Centritto M, Brilli F, Fodale R, Loreto F (2011) Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. Tree Physiol 31:275–286

    Article  CAS  PubMed  Google Scholar 

  • Chéraif I, Jannet HB, Hammami M, Khouja M, Mighri Z (2007) Chemical composition and antimicrobial activity of essential oils of Hesperocyparis arizonica Greene. Biochem Syst Ecol 35:813–820

    Article  Google Scholar 

  • Chetehouna K, Barboni T, Zarguili I, Leoni E, Simeoni A, Fernandez-Pello A-C (2009) Investigation on the emission of volatile organic compounds from heated vegetation and their potential to cause an accelerating forest fire. Combust Sci Technol 181(10):1273–1288

    Article  CAS  Google Scholar 

  • Ciccioli P, Centritto M, Loreto F (2014) Biogenic volatile organic compound emissions from vegetation fires. Plant Cell Environ 37:1810–1825. https://doi.org/10.1111/pce.12336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke PJ, Prior LD, French BJ, Vincent B, Knox KJE, Bowman DMJS (2014) Using a rainforest-flame forest mosaic to test the hypothesis that leaf and litter fuel flammability is under natural selection. Oecologia 176:1123–1133. https://doi.org/10.1007/S00442-014-3071-Y

    Article  PubMed  Google Scholar 

  • Cool LG (2001) Ent-Daucane and acorane sesquiterpenes from X-Cupressocyparis leylandii foliage. Phytochemistry 58:969–972

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Van der Heijden MGA, Pausas JG, Poorter H (2003) Handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380. https://doi.org/10.1071/BT02124

    Article  Google Scholar 

  • Courty L, Chetehouna K, Halter F, Foucher F, Garo J-P, Mounaïm-Rousselle C (2012) Flame speeds of a-pinene/air and limonene/air mixtures involved in accelerating forest fires. Combust Sci Technol 184(10–11):1397–1411

    Article  CAS  Google Scholar 

  • De Magistris AA (2001) Germination of serotinous cone seeds in Cupressus ssp. Israel J Plant Sci 49(4):253–258. https://doi.org/10.1560/9RC8-FJVA-QJUV-EGY8

    Article  Google Scholar 

  • De Lillis M, Bianco PM, Loreto F (2009) The influence of leaf water content and terpenoids on flammability of some Mediterranean woody species. Int J Wildland Fire 18:203–212

    Article  Google Scholar 

  • Della Rocca G, Madrigal J, Marchi E, Michelozzi M, Moya B, Danti R (2017) Relevance of terpenoids on flammability of Mediterranean species: an experimental approach at a low radiant heat flux. iForest 10:766–775. https://doi.org/10.3832/ifor2327-010

    Article  Google Scholar 

  • Engber EA, Varner JM (2012) Patterns of flammability of the California oaks: the role of leaf traits. Can J For Res 42:1965–1975

    Article  Google Scholar 

  • Fall R (1999) Biogenic emissions of volatile organic compounds from higher plants. In: Hewitt CN (ed) Reactive hydrocarbons in the atmosphere. Academic Press, San Diego, pp 41–86

    Chapter  Google Scholar 

  • Ganteaume A (2018) Does plant flammability differ between leaf and litter bed scale? Role of fuel characteristics and consequences for flammability assessment. Int J Wildland Fire 27:342–352. https://doi.org/10.1071/WF17001

    Article  Google Scholar 

  • Ganteaume A, Jappiot M, Lampin C, Guijarro M, Hernando C (2013) Flammability of some ornamental species in wildland-urban interface in southeastern France: laboratory assessment at particle level. Environ Manag 52:467–480

    Article  Google Scholar 

  • Ioannou E, Koutsaviti A, Tzakou O, Roussis V (2014) The genus Pinus: a comparative study on the needle essential oil composition of 46 pine species. Phytochem Rev 13–4:741–768. https://doi.org/10.1007/s11101-014-9338-4

    Article  CAS  Google Scholar 

  • Kännaste A, Pazouki L, Suhhorutšenko M, Copolovici L, Niinemets Ü (2013) Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris) populations. Tree Physiol 33:374–387

    Article  PubMed  Google Scholar 

  • Karban R, Wetzel WC, Shiojiri K, Ishizaki S, Ramirez SR, Blande JD (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol 204:380–385. https://doi.org/10.1111/nph.12887

    Article  PubMed  Google Scholar 

  • Kauf Z, Fangmeier A, Rosavec R, Španjol Z (2014) Testing vegetation flammability: the problem of extremely low ignition frequency and overall flammability score. J Combust 2014:1–10. https://doi.org/10.1155/2014/970218

    Article  Google Scholar 

  • Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge

    Google Scholar 

  • Kelsey RG, González-Hernández MP, Karchesy J, Veluthoor S (2014) Volatile terpenoids and tropolones in heartwood extracts of yellow-cedar, Monterey cypress, and their hybrid Leyland cypress. Ann For Sci 72(3):349–355

    Article  Google Scholar 

  • Langenheim JH (2003) Plant resins: chemistry, evolution, ecology and ethnobotany. Timber Press, Portland, p 586

    Google Scholar 

  • Lev-Yadun S (1995) Living serotinous cones in Cupressus sempervirens. Int J Plant Sci 156(1):50–54

    Article  Google Scholar 

  • Llusià J, Peñuelas J (1998) Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can J Bot 76:1366–1373

    Google Scholar 

  • Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 87:133–140

    Article  PubMed  Google Scholar 

  • Loreto F, Ciccioli P, Brancaleoni E, Cecinato A, Frattoni M, Sharkey TD (1996) Different sources of reduced carbon contribute to form three classes of terpenoid emitted by Quercus ilex L. leaves. Proc Natl Acad Sci USA 93:9966–9969. https://doi.org/10.1073/pnas.93.18.9966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchese JA, Ferreira JFS, Rehder VLG, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., Asteraceae). Braz J Plant Physiol 22:1–9. https://doi.org/10.1590/S1677-04202010000100001

    Article  Google Scholar 

  • Mazari K, Bendinerad N, Benkhechi C, Fernandez X (2010) Chemical composition and antimicrobial activity of essential oil isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens. Med Plants Res 4:959–964

    CAS  Google Scholar 

  • Moore BD, Andrew RL, Külheim C, Foley WJ (2014) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201:733–750. https://doi.org/10.1111/nph.12526

    Article  PubMed  Google Scholar 

  • Nist X (2011) Ray photoelectron spectroscopy database, Version 3.5. National Institute of Technology, Gaithersburg

    Google Scholar 

  • Ormeño E, Mevy J, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67:276–284

    Article  PubMed  Google Scholar 

  • Ormeño E, Baldy V, Ballini C, Fernandez C (2008) Production and diversity of volatile terpenes from plants on calcareous and siliceous soils: effect of soil nutrients. J Chem Ecol 34:1219–1229

    Article  PubMed  Google Scholar 

  • Ormeño E, Cespedes B, Sanchez IA, Velasco-García A, Moreno JM, Fernandez C, Baldy V (2009) The relationship between terpenes and flammability of leaf litter. For Ecol Manag 257:471–482

    Article  Google Scholar 

  • Ormeño E, Goldstein A, Niinemets U (2011) Extracting and trapping biogenic volatile organic compounds stored in plant species. Trac-Trends Anal Chem 30:978–989. https://doi.org/10.1016/j.trac.2011.04.006

    Article  CAS  Google Scholar 

  • Owens MK, Lin C-D, Taylor CA, Whisenant SG (1998) Seasonal patterns of plant flammability and monoterpenoid content in Juniperus ashei. J Chem Ecol 24:2115–2129

    Article  Google Scholar 

  • Page WG, Jenkins MJ, Runyon JB (2012) Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage. Can J For Res 42:1631–1647

    Article  CAS  Google Scholar 

  • Pausas JG, Alessio GA, Moreira B, Corcobado G (2012) Fires enhance flammability in Ulex parviflorus. New Phytol 193:18–23

    Article  PubMed  Google Scholar 

  • Pausas JG, Alessio G, Moreira B, Segarra-Moragues J (2016) Secondary compounds enhance flammability in a Mediterranean plant. Oecologia 180:103–110

    Article  CAS  PubMed  Google Scholar 

  • Pausas JG, Keeley JE, Schwilk DW (2017) Flammability as an ecological and evolutionary driver. J Ecol 105:289–297

    Article  Google Scholar 

  • Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4:184–190

    Article  CAS  PubMed  Google Scholar 

  • Romero B, Fernandez C, Lecareux C, Ormeño E, Ganteaume A (2019) How terpene content affects fuel flammability of wildland–urban interface vegetation. Int J Wildland Fire 28:614–627

    Article  Google Scholar 

  • Sampedro L, Moreira X, Zas R (2011) Costs of constitutive and herbivore-induced chemical defences in pine trees emerge only under low nutrient availability. J Ecol 99:818–827

    Article  Google Scholar 

  • Sawyer JO, Thornburgh DA (1977) Montane and subalpine vegetation of the Klamath Mountains. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. Wiley, New York, pp 699–732

    Google Scholar 

  • Scarff FR, Westoby M (2006) Leaf litter flammability in some semi-arid Australian woodlands. Funct Ecol 20:745–752

    Article  Google Scholar 

  • Schwilk DW, Caprio AC (2011) Scaling from leaf traits to fire behaviour: community composition predicts fire severity in a temperate forest. J Ecol 99:970–980

    Article  Google Scholar 

  • Steele CL, Crock J, Bohlmann J, Croteau R (1998) Sesquiterpene synthases from grand fir (Abies grandis): comparison of constitutive and wound-inducible activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J Biol Chem 273:2078–2089

    Article  CAS  PubMed  Google Scholar 

  • Valor T, Ormeño E, Casals P (2017) Temporal effects of prescribed burning on terpene production in Mediterranean pines. Tree Physiol 37(12):1622–1636

    Article  CAS  PubMed  Google Scholar 

  • Varner JM, Kane JM, Kreye JK, Engber E (2015) The flammability of forest and woodland litter: a synthesis. Curr For Rep 1:91–99. https://doi.org/10.1007/s40725-015-0012-x

    Article  Google Scholar 

  • Vogl RJ, Armstrong WP, White KL, Cole KL (1977) The closed-cone pines and cypress. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. Wiley, New York, pp 295–358

    Google Scholar 

  • Walter J, Charon J, Marpeau A, Launay J (1989) Effects of wounding on the terpene content of twigs of maritime pine (Pinus pinaster Ait). I. Changes in the concentration of diterpene resin acids and ultrastructural modifications of the resin duct epithelial cells following injury. Trees 3:210–219

    Article  Google Scholar 

  • White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406

    Article  CAS  PubMed  Google Scholar 

  • Wright HA, Bailey AW (1982) Fire ecology: United States and Southern Canada. John Wiley & Sons, New York

    Google Scholar 

Download references

Acknowledgements

We gratefully thank Amélie Saunier from the Institut Méditerranéen de Biodiversité et d’Ecologie (IMBE) for her help in the chemical analyses as well as Fabien Guerra, Ugo Furet, Christian Travaglini and Denis Morges (Inrae) for their help during the burning experiments. The authors also sincerely thank Aimee MacCormack for English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Ganteaume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Günther Raspotnig.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganteaume, A., Romero, B., Fernandez, C. et al. Volatile and semi-volatile terpenes impact leaf flammability: differences according to the level of terpene identification. Chemoecology 31, 259–275 (2021). https://doi.org/10.1007/s00049-021-00349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-021-00349-1

Keywords

Navigation