Skip to main content

The origin of the compounds found on males’ antennae of the red mason bee, Osmia bicornis (L.)

Abstract

Pheromones play an important role in the mating behavior of many insects, especially in bees, and it has recently been shown that female Osmia bicornis use the odor bouquet found on male antennae in female choice. Nevertheless, the glandular origin of the substances found on the male antennae is so far unknown. In this study, we investigated if antennal glands exist in males and if they are the glandular source of substances on the antennae’s cuticle, as has been suggested by previous studies. Since electron and light microscopy revealed no such glands, we investigated further possible places of origin for the antennal compounds by conducting chemical analyses of solvent extracts of the male abdominal surface and the antennae, as well as of two glands found in the bee’s head, the labial and mandibular gland. Our results clearly show that the substances found on the abdominal surface and in solvent extracts of the antennae differ significantly in relative amounts. Therefore, the compounds on the antennae must have additional sources. Since the relative amounts of compounds on the surface of antennae are different from the blends on the mandibular gland or the labial gland, neither one of them can be the sole source of the antennal compounds. Hence we believe another glandular source is also involved in the production of the bouquet on the antennae. Especially interesting were high amounts of sterols on the antennae, which also play a role in population differences. This sheds new light on the importance of the antennal compounds and also the importance sterols might play in communication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Andersson M (1986) Evolution of condition-dependent sex ornaments and mating preferences: sexual selection based on viability differences. Evolution 40(4):804–816

    Article  PubMed  Google Scholar 

  2. Ando T, S-i Inomata, Yamamoto M (2004) Lepidopteran sex pheromones. In: Schulz S (ed) Topics in current chemistry, vol 239. Springer, Heidelberg, pp 51–96

    Google Scholar 

  3. Ayasse M, Engels W, Francke W (1999) Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera Halictidae). Behav Ecol Sociobiol 45:95–106. doi:10.1007/s002650050543

    Article  Google Scholar 

  4. Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the order Hymenoptera. Annu Rev Entomol 46(1):31–78. doi:10.1146/annurev.ento.46.1.31

    CAS  Article  PubMed  Google Scholar 

  5. Behmer ST, Nes DW (2003) Insect sterol nutrition and physiology: a global overview. Adv Insect Phys 31:1–72. doi:10.1016/S0065-2806(03)31001-X

    CAS  Article  Google Scholar 

  6. Bergström G, Kullemberg B, Stallberg-Stenhagen S (1973) Studies on natural odoriferous compounds VII: Recognition of two forms of Bombus lucorum L. (Hymenoptera, Apidae) by analysis of the volatile marking secretion from individual males. Chem scripta 4:174–182

    Google Scholar 

  7. Bertsch A, Schweer H, Titze A (2004) Analysis of the labial gland secretions of the male bumblebee Bombus griseocollis (Hymenoptera: Apidae). Z Naturforsch 59:701–707. doi:10.1515/znc-2004-9-1015

    CAS  Google Scholar 

  8. Bin F, Vinson SB (1986) Morphology of the antennal sex-gland in male Trissolcus basalis (Woll.) (Hymenoptera Scelionidae), an egg parasitoid of the green stink bug, Nezara viridula (Hemiptera: Pentatomidae). Int J Ins Morphol 15(3):129–138. doi:10.1016/0020-7322(86)90052-8

    Article  Google Scholar 

  9. Bin F, Wäckers F, Romani R, Isidoro N (1999) Tyloids in Pimpla turionellae (L.) are release structures of male antennal glands involved in courtship behaviour (Hymenoptera Ichneumonidae). Int J Ins Morphol 28(1–2):61–68. doi:10.1016/S0020-7322(99)00015-X

    Article  Google Scholar 

  10. Bloem KA, Kelley KC, Duffey SS (1989) Differential effect of tomatine and its alleviation by cholesterol on larval growth and efficiency of food utilization in Heliothis zea and Spodoptera exigua. J Chem Ecol 15(1):387–398. doi:10.1007/BF02027799

    CAS  Article  PubMed  Google Scholar 

  11. Blomquist Gary J, Bagnères Anne-Geneviève (eds) (2010) Insect hydrocarbons biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  12. Bonavita-Cougourdan A, Clement JL, Lange C (1993) Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus scop.: polymorphism of cuticular hydrocarbon patterns. J Chem Ecol 19(7):1461–1477. doi:10.1007/BF00984890

    CAS  Article  PubMed  Google Scholar 

  13. Bouali I, Trabelsi H, Herchi W, Martine L, Albouchi A, Bouzaien G, Sifi S, Boukhchina S, Berdeaux O (2014) Analysis of pecan nut (Carya illinoinensis) unsaponifiable fraction. Effect of ripening stage on phytosterols and phytostanols composition. Food Chem 164:309–316. doi:10.1016/j.foodchem.2014.05.029

    CAS  Article  PubMed  Google Scholar 

  14. Chapman RF (1982) The insects: structure and function, 3rd edn. Harvard Univ. Press, Cambridge

    Google Scholar 

  15. Clark AJ, Bloch K (1959) The absence of sterol synthesis in insects. J Biol Chem 234(10):2578–2582

    CAS  PubMed  Google Scholar 

  16. Clayton RB (1964) The utilization of sterols by insects. J Lipid Res 5(1):3–19

    CAS  PubMed  Google Scholar 

  17. Conrad T, Paxton RJ, Barth FG, Francke W, Ayasse M (2010) Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae). J Exp Biol 213(23):4065–4073. doi:10.1242/jeb.038174

    CAS  Article  PubMed  Google Scholar 

  18. Dahms EC (1984) An interpretation of the structure and function of the antennal sense organs of Melittobia australica (Hymenoptera: Eulophidae) with the discovery of a large dermal gland in the male scape. Mem Quensl Mus 21:361–385

    Google Scholar 

  19. Development Core Team R (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  20. Felicioli A, Isidoro N, Romani R, Bin F (1998) Ethological and morphological analysis of mating behavior in Osmia cornuta Latr. (Hymenoptera Megachilidae). Insect Soc Life 2:137–144

    Google Scholar 

  21. Ferreira-Caliman MJ, Silva CId, Mateus S, Zucchi R, Nascimento FSd (2012) Neutral sterols of cephalic glands of stingless bees and their correlation with sterols from pollen. Psyche. doi:10.1155/2012/982802

    Google Scholar 

  22. Fraberger RJ, Ayasse M (2007) Mating behavior, male territoriality and chemical communication in the European spiral-horned bees, Systropha planidens and S. curvicornis (Hymenoptera Halictidae). J Kans Entomol Soc 80(4):348–360. doi:10.2317/0022-8567(2007)80[348:mbmtac]2.0.co;2

  23. Guerrieri E, Pedata PA, Romani R, Isidoro N, Bin F (2001) Functional anatomy of male antennal glands in three species of Encyrtidae (Hymenoptera Chalcidoidea). J Nat Hist 35(1):41–54. doi:10.1080/002229301447880

    Article  Google Scholar 

  24. Gwatidzo L, Botha BM, McCrindle RI, Combrinck S (2014) Extraction and identification of phytosterols in manketti (Schinziophyton rautanenii) nut oil. J Am Oil Chem Soc 91(5):783–794

    CAS  Article  Google Scholar 

  25. Horai H, Arita M, Kanaya S, Nihei Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakanishi H, Ikeda K, Akimoto N, Maoka T, Takahashi H, Ara T, Sakurai N, Suzuki H, Shibata D, Neumann S, Iida T, Tanaka K, Funatsu K, Matsuura F, Soga T, Taguchi R, Saito K, Nishioka T (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714. doi: 10.1002/jms.1777

    CAS  Article  PubMed  Google Scholar 

  26. Howard RW (1992) Comparative analysis of cuticular hydrocarbons from the ectoparasitoids Cephalonomia waterstoni and Laelius utilis (Hymenoptera: Bethylidae) and their respective hosts, Cryptolestes ferrugineus (Coleoptera: Cucujidae) and Trogoderma variabile (Coleoptera: Dermestidae). Ann Entomol Soc Am 85(3):317–325. doi:10.1093/aesa/85.3.317

    CAS  Article  Google Scholar 

  27. Ibarra F (2000) Intra- und interspezifische chemische Kommunikation von Insekten Identifizierung und Synthese flüchtiger Signalstoffe. PhD thesis, Universität Hamburg, Hamburg

  28. Ikan R, Gottlieb R, Bergmann ED (1969) Lipids of the queen of the Oriental hornet, Vespa orientalis. J Insect Physiol 15(7):1249–1257. doi:10.1016/0022-1910(69)90234-0

    CAS  Article  Google Scholar 

  29. Isidoro N, Bin F (1995) Male antennal gland of Amitus spiniferus (Brethes) (Hymenoptera Platygastridae), likely involved in courtship behavior. Int J Ins Morphol 24(4):365–373. doi:10.1016/0020-7322(95)00014-U

    Article  Google Scholar 

  30. Isidoro N, Bin F, Colazza S, Vinson SB (1996) Morphology of antennal gustatory sensilla and glands in some parasitoid Hymenoptera with hypothesis on their role in sex and host recognition. J Hymenopt Res 5:206–239. doi:10.5962/bhl.part.28120

    Google Scholar 

  31. Isidoro N, Romani R, Velasquez D, Renthal R, Bin F, Vinson SB (2000) Antennal glands in queen and worker of the fire ant, Solenopsis invicta Buren first report in female social Aculeata (Hymenoptera, Formicidae). Ins Soc 47(3):236–240. doi:10.1007/PL00001709

    Article  Google Scholar 

  32. Karlson P, Lüscher M (1959) Pheromones: a new term for a class of biologically active substances. Nature 183(4653):55–56. doi:10.1038/183055a0

    CAS  Article  PubMed  Google Scholar 

  33. Krieger G, Duchateau M-J, Doorn A, Ibarra F, Francke W, Ayasse M (2006) Identification of queen sex pheromone components of the bumblebee Bombus terrestris. J Chem Ecol 32(2):453–471. doi:10.1007/s10886-005-9013-8

    CAS  Article  PubMed  Google Scholar 

  34. Li TSC, Beveridge THJ, Drover JCG (2007) Phytosterol content of sea buckthorn (Hippophae rhamnoides L.) seed oil: extraction and identification. Food Chem 101(4):1633–1639

    CAS  Article  Google Scholar 

  35. Nakanishi A, Nishino H, Watanabe H, Yokohari F, Nishikawa M (2009) Sex-specific antennal sensory system in the ant Camponotus japonicus structure and distribution of sensilla on the flagellum. Cell Tissue Res 338(1):79–97. doi:10.1007/s00441-009-0863-1

    Article  PubMed  Google Scholar 

  36. Noirot C, Quennedey A (1974) Fine structure of insect epidermal glands. Annu Rev Entomol 19(1):61–80. doi:10.1146/annurev.en.19.010174.000425

    Article  Google Scholar 

  37. Pospischil A, Walther P, Dingemanse J (2009) Phospholipidosis in healthy subjects participating in clinical studies: ultrastructural findings in white blood cells. Exp Toxicol Pathol 62(5):567–571. doi:10.1016/j.etp.2009.07.007

    Article  PubMed  Google Scholar 

  38. Roitberg BD, Isman MB (eds) (1992) Insect chemical ecology: An evolutionary approach. Chapmann & Hall, New York

    Google Scholar 

  39. Romani R, Isidoro N, Riolo P, Bin F (2003) Antennal glands in male bees: structures for sexual communication by pheromones? Apidologie 34:603–610. doi:10.1051/apido:2003053

    Article  Google Scholar 

  40. Romani R, Isidoro N, Riolo P, Bin F, Fortunato A, Turillazzi S, Beani L (2005) A new role for antennation in paper wasps (Hymenoptera, Vespidae): antennal courtship and sex dimorphic glands in antennomeres. Ins Soc 52(1):96–102. doi:10.1007/s00040-004-0780-y

    Article  Google Scholar 

  41. Ryan P, Harper D, Whalley J (1995) PALSTAT, Statistics for palaeontologists. Chapman & Hall, London

  42. Seidelmann K (1995) Untersuchungen zur Reproduktionsbiologie der Roten Mauerbiene, Osmia rufa (L., 1758). PhD thesis, Martin-Luther University Halle-Wittenberg, Halle

  43. Snodgrass RE (1942) The skeleto-muscular mechanisms of the honey bee. Smithson Misc Collect 103(2):1–120

    Google Scholar 

  44. Snodgrass RE (1956) Anatomy of the honey bee. Cornell University Press, Ithaca

    Google Scholar 

  45. Svoboda JA, Herbert EW, Thompson MJ, Feldlaufer MF (1986) Selective sterol transfer in the honey bee: its significance and relationship to other Hymenoptera. Lipids 21(1):97–101. doi:10.1007/BF02534310

    CAS  Article  PubMed  Google Scholar 

  46. Vander Meer RK, Breed MD, Espelie KE, Winston ML (1998) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder

    Google Scholar 

  47. Vidkjær NH, Wollenweber B, Gislum R, Jensen K-MV, Fomsgaard IS (2015) Are ant feces nutrients for plants? A metabolomics approach to elucidate the nutritional effects on plants hosting weaver ants. Metabolomics 11(4):1013–1028. doi:10.1007/s11306-014-0757-4

    Article  Google Scholar 

  48. Vidkjær NH, Jensen KMV, Gislum R, Fomsgaard IS (2016a) Profiling and metabolism of sterols in the weaver ant genus Oecophylla. Nat Prod Commun 11(1):39–43

    PubMed  Google Scholar 

  49. Vidkjær NH, Wollenweber B, Jensen K-MV, Ambus PL, Offenberg HJ, Fomsgaard IS (2016b) Urea in weaver ant feces: quantification and investigation of the uptake and translocation of urea in Coffea arabica. J Plant Growth Regul 35(3):803–814. doi:10.1007/s00344-016-9586-1

    Article  Google Scholar 

  50. Walther P (2008) High resolution cryoscanning electron microscopy of biological samples. In: Schatten H, Pawley JB (eds) Biological low-voltage scanning electron microscopy. Springer, New York, pp 245–261

    Chapter  Google Scholar 

  51. Wigglesworth VB (1945) Transpiration through the cuticle of insects. J Exp Biol 21(3–4):97

    Google Scholar 

  52. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

We would like to thank Eberhard Schmid from the Central Facility for Electron Microscopy, Ulm University for all his help in preparing the samples used for SEM, TEM and light microscopy. We would also like to thank Dr. Stefan Jarau (PH Voralberg) for help with the microscopy and Dr. Hans G. Rinderknecht (Lawrance Livermore National Laboratory, CA) for language advice. This study was funded by the German Federal Environmental Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taina Conrad.

Additional information

Handling Editor: Michael Heethoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conrad, T., Vidkjær, N.H. & Ayasse, M. The origin of the compounds found on males’ antennae of the red mason bee, Osmia bicornis (L.). Chemoecology 27, 207–216 (2017). https://doi.org/10.1007/s00049-017-0245-1

Download citation

Keywords

  • Labial gland
  • Mandibular gland
  • Antennal glands
  • Male pheromones