Skip to main content
Log in

Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria cubensis FLe9

Chemoecology Aims and scope Submit manuscript

Cite this article

Abstract

Microorganisms interact with each other via metabolic exchange. Several studies have revealed that microbial metabolites may act as mediators of microbial interactions. During our previous work with endophytes isolated from the Brazilian medicinal plant Lychnophora ericoides, we demonstrated that the well-known antifungal compound amphotericin B, produced by the endophytic actinobacterium Streptomyces albospinus RLe7, may trigger chemical responses in endophytic fungi. In this study, we cultured endophytic fungi in amphotericin B-enriched media to verify whether other chemical responses could be induced. Interestingly, one fungal strain showed a differential response under the tested conditions. When the fungus Xylaria cubensis FLe9 was cultured in amphotericin B-enriched media, a mycelial guttate was observed. Investigation of the fungal extracts from X. cubensis FLe9 and purification of fungal metabolites were performed using high-performance liquid chromatography coupled to a diode array detector. Isolated compounds were characterized on the basis of nuclear magnetic resonance and mass spectrometry data. Therefore, we report on the overproduction of the fungal metabolites griseofulvin (1) and dechlorogriseofulvin (2) when the endophytic fungus Xylaria cubensis FLe9 was exposed to amphotericin B. Both fungal compounds 1 and 2 were also detected in the mycelial guttate produced when X. cubensis FLe9 was exposed to amphotericin B. Since the amphotericin B-producing actinobacterium S. albospinus RLe7 and the griseofulvin-producing fungus X. cubensis FLe9 are endophytes from the same host, biosynthetic induction of fungal compounds may suggest a potential signaling role for amphotericin B in natural environments. However, this hypothesis needs to be further investigated in field experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Amano S, Morota T, Kano YK, Narita H, Hashidzume T, Yamamoto S, Mizutani K, Sakuda S, Furihata K, Takano-Shiratori H, Takano H, Beppu T, Ueda K (2010) Promomycin, a polyether promoting antibiotic production in Streptomyces spp. J Antibiot 63:486–491. doi:10.1038/ja.2010.68

    Article  CAS  PubMed  Google Scholar 

  • Amano S, Sakurai T, Endo K, Takano H, Beppu T, Furihata K, Sakuda S, Ueda K (2011) A cryptic antibiotic triggered by monensin. J Antibiot 64:703. doi:10.1038/ja.2011.69

    Article  CAS  PubMed  Google Scholar 

  • Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD (2014) Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 10:400–406. doi:10.1038/nchembio.1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreote FD, Pereira e Silva MDC (2017) Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr Opin Microbiol. doi:10.1016/j.mib.2017.03.011

    PubMed  Google Scholar 

  • Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204. doi:10.1016/j.biotechadv.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  • Blank H (1965) Antifungal and other effects of griseofulvin. Am J Med 39:831–838. doi:10.1016/0002-9343(65)90102-6

    Article  CAS  PubMed  Google Scholar 

  • Brian PW, Curtis PJ, Hemming HG (1949) A Substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii zal. III. Identity of “Curling Factor” with griseofulvin. Trans Br Mycol Soc 32:30–33

    Article  CAS  Google Scholar 

  • Brooks CW, Paguigan ND, Raja HA, Moy FJ, Cech NB, Pearce JC, Oberlies NH (2017) qNMR for profiling the production of fungal secondary metabolites. Magn Reson Chem. doi:10.1002/mrc.4571

    PubMed  Google Scholar 

  • Caraballo-Rodríguez AM, Dorrestein PC, Pupo MT (2017) Molecular inter-kingdom interactions of endophytes isolated from Lychnophora ericoides. Sci Rep 7:1–14. doi:10.1038/s41598-017-05532-5

    Article  Google Scholar 

  • Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39:1335–1342. doi:10.1007/s10886-013-0351-7

    Article  CAS  PubMed  Google Scholar 

  • Chagas FO, Caraballo-Rodríguez AM, Dorrestein PC, Pupo MT (2017) Expanding the chemical repertoire of the endophyte Streptomyces albospinus RLe7 reveals amphotericin B as inducer of a fungal phenotype. J Nat Prod 80:1302–1309. doi:10.1021/acs.jnatprod.6b00870

    Article  CAS  PubMed  Google Scholar 

  • Colotelo N (1978) Fungal exudates. Can J Microbiol 24:1173–1181

    Article  CAS  PubMed  Google Scholar 

  • Conti R, Chagas FO, Caraballo-Rodriguez AM, Melo WGD, do Nascimento AM, Cavalcanti BC, de Moraes MO, Pessoa C, Costa-Lotufo LV, Krogh R, Andricopulo AD, Lopes NP, Pupo MT (2016) Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides Mart and the biological potential of their secondary metabolites. Chem Biodivers 13:727–736. doi:10.1002/cbdv.201500225

    Article  CAS  PubMed  Google Scholar 

  • CRCnetBASE (2017) Dictionary of natural products. http://dnp.chemnetbase.com. Accessed 15 July 2016

  • Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499. doi:10.1007/s10295-006-0112-5

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Ryan KS (2012) Introducing the parvome: bioactive compounds in the microbial world. ACS Chem Biol 7:252–259. doi:10.1021/cb200337h

    Article  CAS  PubMed  Google Scholar 

  • Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. doi:10.1016/j.mib.2006.08.006

    Article  CAS  PubMed  Google Scholar 

  • Doll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc R Soc B 280:7. doi:10.1098/rspb.2013.1219

    Article  Google Scholar 

  • Gareis M, Gareis EM (2007) Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163:207–214. doi:10.1007/s11046-007-9003-1

    Article  CAS  PubMed  Google Scholar 

  • Gentles JC (1958) Experimental ringworm in guinea pigs-oral treatment with griseofulvin. Nature 182:476–477. doi:10.1038/182476a0

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:8. doi:10.3389/fmicb.2016.01538

    Article  Google Scholar 

  • Grove JF, McGowan JC (1947) Identity of Griseofulvin and “Curling Factor”. Nature 160(574):1947. doi:10.1038/160574a0

    Google Scholar 

  • Grovel O, Pouchus YF, Verbist JF (2003) Accumulation of gliotoxin, a cytotoxic mycotoxin from Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon 42:297–300. doi:10.1016/s0041-0101(03)00146-6

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Duh JS, Jeng JH, Wang YJ, Liang YC, Lin CH, Tseng CJ, Yu CF, Chen RJ, Lin JK (2001) Griseofulvin potentiates antitumorigenesis effects of nocodazole through induction of apoptosis and G2/M cell cycle arrest in human colorectal cancer cells. Int J Cancer 91:393–401. doi:10.1002/1097-0215(200002)9999:9999<:aid-ijc1070>3.0.co;2-#

  • Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102:1–10. doi:10.3852/09-079

    Article  CAS  PubMed  Google Scholar 

  • Jennings DH (1991) The role of droplets in helping to maintain a constant growth-rate of aerial hyphae. Mycol Res 95:883–884

    Article  Google Scholar 

  • Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22:672–695. doi:10.1039/b404943h

    Article  CAS  PubMed  Google Scholar 

  • Llorens E, Garcia-Agustin P, Lapena L (2017) Advances in induced resistance by natural compounds: towards new options for woody crop protection. Scientia Agricola 74:90–100. doi:10.1590/1678-992x-2016-0012

    Article  Google Scholar 

  • Macmillan J (1953) Griseofulvin. 7. Dechlorogriseofulvin. J Chem Soc 1953:1697–1702. doi:10.1039/jr9530001697

    Article  Google Scholar 

  • McPhee WJ, Colotelo N (1977) Fungal exudates. 1. Characteristics of hyphal exudates in Fusarium culmorum. Can J Bot 55:358–365

    Article  Google Scholar 

  • Moriwaki J, Sato T, Tsukiboshi T (2003) Morphological and molecular characterization of Colletotrichum boninense sp. nov. from Japan. Mycoscience 44:47–53

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2015) Endophytic and epiphytic microbes as “sources” of bioactive agents. Fron Chem 3:1–13. doi:10.3389/fchem.2015.00034

    CAS  Google Scholar 

  • Oxford AE, Raistrick H, Simonart P (1939) Studies in the biochemistry of micro-organisms. LX. Griseofulvin, C17H17O6Cl, a metabolic product of Penicillium griseo-fulvum Dierckx. Biochem J 33:240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paguigan ND, Raja HA, Day CS, Oberlies NH (2016) Acetophenone derivatives from a freshwater fungal isolate of recently described Lindgomyces madisonensis (G416). Phytochemistry 126:59–65. doi:10.1016/j.phytochem.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW, Jang KS, Cho KY, Kim JC (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Petersen AB, Ronnest MH, Larsen TO, Clausen MH (2014) The chemistry of griseofulvin. Chem Rev 114:12088–12107. doi:10.1021/cr400368e

    Article  CAS  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pocsi I (2015) Secondary metabolites in fungus-plant interactions. Fron Plant Sci 6:23. doi:10.3389/fpls.2015.00573

    Google Scholar 

  • Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA. doi:10.1073/pnas.1614680114

    PubMed Central  Google Scholar 

  • Ronnest MH, Raab MS, Anderhub S, Boesen S, Kramer A, Larsen TO, Clausen MH (2012) Disparate SAR data of griseofulvin analogues for the Dermatophytes Trichophyton mentagrophytes, T. rubrum, and MDA-MB-231 cancer cells. J Med Chem 55:652–660. doi:10.1021/jm200835c

    Article  PubMed  Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33. doi:10.1016/j.soilbio.2015.04.001

    Article  CAS  Google Scholar 

  • Sharma AD, Singh J (2005) A nonenzymatic method to isolate genomic DNA from bacteria and actinomycete. Anal Biochem 337:354–356. doi:10.1016/j.ab.2004.11.029

    Article  CAS  PubMed  Google Scholar 

  • Sica VP, Raja HA, El-Elimat T, Kertesz V, Van Berkel GJ, Pearce CJ, Oberlies NH (2015) Dereplicating and spatial mapping of secondary metabolites from fungal cultures in situ. J Nat Prod 78:1926–1936. doi:10.1021/acs.jnatprod.5b00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sica VP, Rees ER, Tchegnon E, Bardsley RH, Raja HA, Oberlies NH (2016) Spatial and temporal profiling of griseofulvin production in Xylaria cubensis using mass spectrometry mapping. Front Microbiol 7:1–14. doi:10.3389/fmicb.2016.00544

    Article  Google Scholar 

  • Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN (2015) an endophyte constructs fungicide-containing extracellular barriers for its host plant. Curr Biol 25:2570–2576. doi:10.1016/j.cub.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  • Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio 4:e00459–e00513

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueda K, Beppu T (2017) Antibiotics in microbial coculture. J Antibiot 70:361–365. doi:10.1038/ja.2016.127

    Article  CAS  PubMed  Google Scholar 

  • Wang XR, Sena JG, Hoover AR, King JB, Ellis TK, Powell DR, Cichewicz RH (2010) Chemical epigenetics alters the secondary metabolite composition of guttate excreted by an atlantic-forest-soil-derived Penicillium citreonigrum. J Nat Prod 73:942–948. doi:10.1021/np100142h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MY, Xu RF, Du SY, Wang CY, Xu TY, Shao CL (2016) A new griseofulvin derivative from the marine-derived Arthrinium sp. fungus and its biological activity. Chem Nat Compd 52:1011–1014. doi:10.1007/s10600-016-1849-3

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  • Williams DI, Marten RH, Sarkany I (1958) Oral treatment of ringworm with griseofulvin. Lancet 2:1212–1213

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Oldroyd GED (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336. doi:10.1038/nature22009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Weilan Gomes da Paixão Melo and Bárbara Matos do Prado for their support during DNA extraction and PCR procedures. This work was supported by the São Paulo Research Foundation (FAPESP) Grants #2012/21803-1, #2014/01651-8, #2008/09540-0 and #2013/07600-3 (CEPID-CIBFar) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Grants #152058/2015-0 (PIBIC) and #150572/2015-8. We also thank Instituto Nacional de Ciência e Tecnologia de Biotecnologia Estrutural e Química Medicinal em Doenças Infecciosas (INCT-INBEQMeDI) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for supporting this research. MTP thanks CNPq for the research fellowship. We acknowledge the valuable suggestions from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica T. Pupo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Marko Rohlfs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1772 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraballo-Rodríguez, A.M., Mayor, C.A., Chagas, F.O. et al. Amphotericin B as an inducer of griseofulvin-containing guttate in the endophytic fungus Xylaria cubensis FLe9. Chemoecology 27, 177–185 (2017). https://doi.org/10.1007/s00049-017-0243-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0243-3

Keywords

Navigation