Abstract
In analogy to herbivores, fungivorous animals may find suitable host fungi using fungal volatiles as infochemicals and to distinguish between fungi of varying suitability. This study tests the influence of volatiles emitted by micro-fungi, yeast and mould, on the foraging behaviour of facultative fungivorous Drosophila melanogaster larvae. We hypothesised that establishing or avoiding contact with edible yeast (host fungus) and inedible, toxic mould (non-host fungus) is regulated by fungus-specific variation in volatile production. In particular, we expected the non-host fungus to produce specific volatiles that repel fly larvae and thus contribute to signal inedibility. By quantifying innate variation in arrival of individual D. melanogaster larvae at colonies of the mutualist yeast Candida californica or of the antagonistic mould Penicillium expansum, we found the yeast to attract more rapidly a larger number of larvae than the mould did. The developmental stage (young, vegetative vs. old, sporulating) of P. expansum did not affect arrival of larvae at fungal colonies. We used gas chromatography coupled with mass spectrometry (GC–MS) to identify the composition of fungal volatiles. Four compounds appeared to be yeast-specific, twenty to be mould-specific volatiles. Eight volatiles were consistently produced by both young and old P. expansum. Two compounds, 3-methyl-1-butanol and 2-methyl-1-propanol, were released by P. expansum (young and old) as well as C. californica. Time-dependent behavioural response profiles of ~750 D. melanogaster larvae revealed innate attraction to three alcohols produced by yeast and/or moulds and to two yeast-specific organic acids. We found no indication of a repellent effect of mould-specific compounds, including terpenoids like geosmin known to elicit strong avoidance behaviour of adult D. melanogaster in response to harmful microbes. Also, synthetic mould and yeast-specific blends of attractive compounds were equally attractive to the larvae. With respect to the species combinations investigated in this study, we hypothesize that qualitative differences in fungal volatile profiles are of minor relevance in how Drosophila larvae locate and probably discriminate between fungi of varying suitability.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Anagnostou C, Dorsch M, Rohlfs M (2010a) Influence of dietary yeasts on Drosophila melanogaster life-history traits. Entomol Exp Appl 136:1–11. doi:10.1111/j.1570-7458.2010.00997.x
Anagnostou C, LeGrand EA, Rohlfs M (2010b) Friendly food for fitter flies?—Influence of dietary microbial species on food choice and parasitoid resistance in Drosophila. Oikos 119:533–541. doi:10.1111/j.1600-0706.2009.18001.x
Andersen B, Smedsgaard J, Frisvad JC (2004) Penicillium expansum: consistent production of patulin, chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. J Agric Food Chem 52:2421–2428. doi:10.1021/jf035406k
Azeem M, Rajarao GK, Nordenhem H, Nordlander G, Borg-Karlson AK (2013) Penicillium expansum volatiles reduce pine weevil attraction to host plants. J Chem Ecol 39:120–128. doi:10.1007/s10886-012-0232-5
Batta YA (2006) Quantitative postharvest contamination and transmission of Penicillium expansum (Link) conidia to nectarine and pear fruit by Drosophila melanogaster (Meig.) adults. Postharv Biol Technol 40:190–196. doi:10.1016/j.postharvbio.2006.01.006
Baumberger JP (1919) A nutritional study of insects, with special reference to microorganisms and their substrata. J Exp Zool 28:1–81. doi:10.1002/jez.1400280102
Becher PG, Flick G, Rozpędowska E, Schmidt A, Hagman A, Lebreton S, Larsson MC, Hansson BS, Piškur J, Witzgall P, Bengtsson M (2012) Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Funct Ecol 26:822–828. doi:10.1111/j.1365-2435.2012.02006.x
Begon M (1982) Yeast and Drosophila. In Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila, vol 3b. Academic Press Inc., London, pp 345–384
Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trend Plant Sci 10:269–274. doi:10.1016/j.tplants.2005.04.003
Caballero Ortiz S, Trienens M, Rohlfs M (2013) Induced fungal resistance to insect grazing: reciprocal fitness consequences and fungal gene expression in the Drosophila-Aspergillus model system. PLOS ONE 8:e74951. doi:10.1371/journal.pone.0074951
Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S, Dowd PF, Shantappa S, Martens SL, Calvo AM (2014) Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fung Genet Biol 64:25–35. doi:10.1016/j.fgb.2014.01.001
Christiaens JF, Franco LM, Cools TL, De Meester L, Michiels J, Wenseleers T, Hassan BA, Yaksi E, Verstrepen KJ (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432. doi:10.1016/j.celrep.2014.09.009
Combet E, Eastwood DC, Burton KS, Henderson J (2006) Eight-carbon volatiles in mushrooms and fungi: properties, analysis, and biosynthesis. Mycoscience 47:317–326. doi:10.1007/S10267-006-0318-4
Cunningham JP, Moore CJ, Zalucki MP, Cribb BW (2006) Insect odour perception: recognition of odour components by flower foraging moths. Proc R Soc Lond B 273:2035–2040. doi:10.1098/rspb.2006.3559
Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39:840–859. doi:10.1007/s10886-013-0306-z
Döll K, Chatterjee S, Scheu S, Karlovsky P, Rohlfs M (2013) Fungal metabolic plasticity and sexual development mediate induced resistance to arthropod fungivory. Proc R Soc Lond B 280:20131219. doi:10.1098/rspb.2013.1219
Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086–2096. doi:10.1016/j.cub.2005.11.016
Fox GA (2001) Failure-time analysis—Studying times to events and rates at which events occur. In: Scheiner SM, Gurevitch J (eds) Desgin and analysis of ecological experiments 2nd edn. Oxford University Press, New York, pp 235–266)
Galizia CG, Münch D, Strauch M, Nissler A, Ma S (2010) Integrating heterogeneous odor response data into a common response model: a DoOR to the complete olfactome. Chem Senses 35:551–563. doi:10.1093/chemse/bjq042
Gilbert DI (1980) Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46:135–137. doi:10.1007/BF00346979
Gomez-Marin A, Louis M (2014) Multilevel control of run orientation in Drosophila larval chemotaxis. Front Behav Neurosci 8, doi:10.3389/fnbeh.2014.00038
Hughes NK, Price CJ, Banks PB (2010) Predators are attracted to the olfactory signals of prey. PLOS ONE 5:e13114. doi:10.1371/journal.pone.0013114
Khurana S, Siddiqi O (2013) Olfactory responses of Drosophila larvae. Chem Senses 38:315–323. doi:10.1093/chemse/bjs144
Khurana S, Abubaker MB, Siddiqi O (2009) Odour avoidance learning in the larva of Drosophila melanogaster. J Biosci 34:621–631. doi:10.1007/s12038-009-0080-9
Knaden M, Strutz A, Ahsan J, Sachse S, Hansson BS (2012) Spatial representation of odorant valence in an insect brain. Cell Rep 1:392–399. doi:10.1016/j.celrep.2012.03.002
Knolhoff LM, Heckel DG (2014) Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Annu Rev Ecol Evol Syst 59:263–278. doi:10.1146/annurev-ento-011613-161945
Kramer R, Abraham W-R (2011) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11:15–37. doi:10.1007/s11101-011-9216-2
Larsen TO, Frisvad JC (1995) Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99:1153–1166. doi:10.1016/S0953-7562(09)80271-2
Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to `the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95. doi:10.1016/S1164-5563(03)00006-2
Martin JF, Fisher TH, Bennett LW (1988) Musty odor in chronically off-flavored channel catfish: isolation of 2-methylenebornane and 2-methyl-2-bornene. J Agric Food Chem 36:1257–1260. doi:10.1021/jf00084a032
Mathew D, Martelli C, Kelley-Swift E, Brusalis C, Gershow M, Samuel ADT, Emonet T, Carlson JR (2013) Functional diversity among sensory receptors in a Drosophila olfactory circuit. Proc Natl Acad Sci USA 110:E2134–E2143. doi:10.1073/pnas.1306976110
McLafferty F (2009) Registry of mass spectral data combined with NIST/EPA/NIH database 2008. Wiley, Hoboken
McRae JF, Jaeger SR, Bava CM, Beresford MK, Hunter D, Jia Y, Chheang SL, Jin D, Peng M, Gamble JC, Atkinson KR, Axten LG, Paisley AG, Williams L, Tooman L, Pineau B, Rouse SA, Newcomb RD (2013) Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr Biol 23:1596–1600. doi:10.1016/j.cub.2013.07.031
Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi—chemotyping of species and ecological functions. Fung Genet Biol 54:25–33. doi:10.1016/j.fgb.2013.02.005
Nilsson T, Larsen TO, Montanarella L, Madsen JØ (1996) Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species. J Microbiol Meth 25:245–255. doi:10.1016/0167-7012(95)00093-3
Pickett JA, Bruce TJA (2011) Perception of plant volatile blends by herbivorous insects—finding the right mix. Phytochemistry 72:1605–1611. doi:10.1016/j.phytochem.2011.04.011
R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rohlfs M (2005) Clash of kingdoms or why Drosophila larvae respond to fungal competitors. Front Zool 2:2. doi:10.1186/1742-9994-2-2
Rohlfs M, Albert M, Keller NP, Kempken F (2007) Secondary chemicals protect mould from fungivory. Biol Lett 3:523–525. doi:10.1098/rsbl.2007.0338
Rolls BJ, Rowe EA, Rolls ET (1982) How sensory properties of foods affect human feeding behavior. Physiol Behav 29:409–417. doi:10.1016/0031-9384(82)90259-1
Shaw PJA (1988) A consistent hierarchy in the fungal feeding preference of the collembola Onychiurus armatus. Pedobiologia 39:179–187
Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699. doi:10.1111/j.1469-8137.2010.03523.x
Staaden S, Milcu A, Rohlfs M, Scheu S (2010) Fungal toxins affect the fitness and stable isotope fractionation of Collembola. Soil Biol Biochem 42:1766–1773. doi:10.1016/j.soilbio.2010.06.014
Stamps JA, Yang LH, Morales VM, Boundy-Mills KL (2012) Drosophila regulate yeast density and increase yeast community similarity in natural substrate. PLoS ONE 7:e42238. doi:10.1371/journal.pone.0042238
Stensmyr MC, Dweck HKM, Farhan A, Ibba I, Strutz A, Mukunda L, Linz J, Grabe V, Steck K, Lavista-Llano S, Wicher D, Sachse S, Knaden M, Becher PG, Seki Y, Hansson BS (2012) A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell 151:1345–1357. doi:10.1016/j.cell.2012.09.046
Tentelier C, Fauvergue X (2007) Herbivore-induced plant volatiles as cues for habitat assessment by a foraging parasitoid. J Anim Ecol 76:1–8. doi:10.1111/j.1365-2656.2006.01171.x
Therneau T (2012). Package “coxme”. Mixed Effects Cox Models. http://r-Forge.r-Project.org
Therneau T (2014) Package “survival”. Survival analysis. http://r-Forge.r-Project.org
Trienens M, Keller NP, Rohlfs M (2010) Fruit, flies and filamentous fungi—experimental analysis of animal-microbe competition using Drosophila melanogaster and Aspergillus as a model system. Oikos 119:1765–1775. doi:10.1111/j.1600-0706.2010.18088.x
Visser JH (1986) Host odor perception in phytophagous insects. Ann Rev Entomol 31:121–144. doi:10.1146/annurev.en.31.010186.001005
Yin W-B, Amaike S, Wohlbach DJ, Gasch AP, Chiang Y-M, Wang CCC, Bok JW, Rohlfs M, Keller NP (2012) An Aspergillus nidulans bZIP response pathway hardwired for defensive secondary metabolism operates through aflR. Mol Microbiol 83:1024–1034. doi:10.1111/j.1365-2958.2012.07986.x
Acknowledgments
This study was supported by DFG (German Research Foundation) research grants to MR (grant no. RO3523/3-1 and 3-2). We thank Andrey Yurkov (DSMZ, Braunschweig, Germany) for identification of Candida californica. Thomas O. Larsen and Jens Frisvad (DTU, Lyngby, Denmark) are acknowledged for providing the Penicillium expansum isolate. We thank two anonymous referees for their constructive criticism on an earlier version of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Michael Heethoff.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Stötefeld, L., Holighaus, G., Schütz, S. et al. Volatile-mediated location of mutualist host and toxic non-host microfungi by Drosophila larvae. Chemoecology 25, 271–283 (2015). https://doi.org/10.1007/s00049-015-0197-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00049-015-0197-2


