Skip to main content

Reducible defence: chemical protection alters the dynamics of predator–prey interactions

Abstract

Morphological and chemical defences are widespread anti-predator mechanisms in most domains of life, and play an important role in understanding predator–prey interactions. Classical concepts of dynamical protection (‘inducible defence’) include the morphological changes in certain crustaceans or the production of chemicals in many plants. Permanently stored defensive secretions are, to our knowledge, ignored in food web ecology. We show that this kind of chemical defence is highly dynamic and may loose its effect over time (‘reducible defence’). Combining experimental and theoretical approaches, we show that chemical defence also changes the time budget of predators and decreases the strength of the functional response. However, this may be counteracted by increasing predator density—an effect we call ‘apparent facilitation’. The interplay of ‘reducible defence’ and ‘apparent facilitation’ may substantially contribute to stability in terrestrial ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abrams PA, Walters CJ (1996) Invulnerable prey and the paradox of enrichment. Ecology 77:1125–1133

    Article  Google Scholar 

  2. Altwegg R, Eng M, Caspersen S, Anholt BR (2006) Functional response and prey defence level in an experimental predator–prey system. Evol Ecol Res 8:115–128

    Google Scholar 

  3. Binzer A, Guill C, Brose U, Rall BC (2012) The dynamics of food chains under climate change and nutrient enrichment. Philos Trans R Soc B Biol Sci 367:2935–2944. doi:10.1098/rstb.2012.0230

    Article  Google Scholar 

  4. Boit A, Martinez ND, Williams RJ, Gaedke U (2012) Mechanistic theory and modelling of complex food-web dynamics in Lake Constance. Ecol Lett 15:594–602. doi:10.1111/j.1461-0248.2012.01777.x

    Article  PubMed  Google Scholar 

  5. Burnham KP, Anderson DR (2004) Multimodel Inference. Sociol Methods Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  6. Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  7. Core Team R (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  8. Crawley MJ (2007) The R Book, Auflage, 1st edn. Wiley, New York

    Book  Google Scholar 

  9. Eisner T, Eisner M, Siegler M (2005) Secret weapons—defenses of insects, spiders, scorpions, and other many-legged creatures. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  10. Fussmann KE, Schwarzmüller F, Brose U et al (2014) Ecological stability in response to warming. Nat Clim Change 4:206–210. doi:10.1038/nclimate2134

    Article  Google Scholar 

  11. Genkai-Kato M, Yamamura N (1999) Unpalatable prey resolves the paradox of enrichment. Proc R Soc B Biol Sci 266:1215–1219. doi:10.1098/rspb.1999.0765

    Article  Google Scholar 

  12. Giller PS (1996) The diversity of soil communities, the ‘poor man’s tropical rainforest’. Biodivers Conserv 5:135–168. doi:10.1007/BF00055827

    Article  Google Scholar 

  13. Hammill E, Petchey O, Anholt B (2010) Predator functional response changed by induced defenses in prey. Am Nat 176:723–731. doi:10.1086/657040

    Article  PubMed  Google Scholar 

  14. Heethoff M (2012) Regeneration of complex oil-gland secretions and its importance for chemical defense in an oribatid mite. J Chem Ecol 38:1116–1123. doi:10.1007/s10886-012-0169-8

    Article  CAS  PubMed  Google Scholar 

  15. Heethoff M, Raspotnig G (2012a) Expanding the “enemy-free space” for oribatid mites: evidence for chemical defense of juvenile Archegozetes longisetosus against the rove beetle Stenus juno. Exp Appl Acarol 56:93–97. doi:10.1007/s10493-011-9501-1

    Article  PubMed  Google Scholar 

  16. Heethoff M, Raspotnig G (2012b) Triggering chemical defense in an oribatid mite using artificial stimuli. Exp Appl Acarol 56:287–295. doi:10.1007/s10493-012-9521-5

    Article  CAS  PubMed  Google Scholar 

  17. Heethoff M, Laumann M, Bergmann P (2007) Adding to the reproductive biology of the parthenogenetic oribatid mite, Archegozetes longisetosus (Acari, Oribatida, Trhypochthoniidae). Turk J Zool 31:151–159. doi:10.3906/zoo-0601-7

    Google Scholar 

  18. Heethoff M, Koerner L, Norton RA, Raspotnig G (2011) Tasty but protected—first evidence of chemical defense in oribatid mites. J Chem Ecol 37:1037–1043. doi:10.1007/s10886-011-0009-2

    Article  CAS  PubMed  Google Scholar 

  19. Heethoff M, Bergmann P, Laumann M, Norton RA (2013) The 20th anniversary of a model mite: a review of current knowledge about Archegozetes Longisetosus (acari, Oribatida). Acarologia 53:353–368. doi:10.1051/acarologia/20132108

    Article  Google Scholar 

  20. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398. doi:10.4039/Ent91385-7

    Article  Google Scholar 

  21. Jeschke JM (2006) Density-dependent effects of prey defenses and predator offenses. J Theor Biol 242:900–907. doi:10.1016/j.jtbi.2006.05.017

    Article  PubMed  Google Scholar 

  22. Jeschke JM, Tollrian R (2000) Density-dependent effects of prey defences. Oecologia 123:391–396. doi:10.1007/s004420051026

    Article  Google Scholar 

  23. Jeschke JM, Kopp M, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72:95–112. doi:10.2307/3100087

    Article  Google Scholar 

  24. Kalinkat G, Rall BC, Vucic-Pestic O, Brose U (2011) The allometry of prey preferences. PLoS One 6:e25937. doi:10.1371/journal.pone.0025937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Kalinkat G, Schneider FD, Digel C et al (2013) Body masses, functional responses and predator–prey stability. Ecol Lett 16:1126–1134. doi:10.1111/ele.12147

    Article  PubMed  Google Scholar 

  26. Kefi S, Berlow EL, Wieters EA et al (2012) More than a meal… integrating non-feeding interactions into food webs. Ecol Lett 15:291–300. doi:10.1111/j.1461-0248.2011.01732.x

    Article  Google Scholar 

  27. Koen-Alonso M (2007) A process-oriented approach to the multispecies functional response. Energ Ecosyst Dyn Struct Ecol Syst, pp 1–36

  28. Kopp M, Tollrian R (2003) Reciprocal phenotypic plasticity in a predator–prey system: inducible offences against inducible defences? Ecol Lett 6:742–748. doi:10.1046/j.1461-0248.2003.00485.x

    Article  Google Scholar 

  29. Kratina P, Vos M, Anholt BR (2007) Species diversity modulates predation. Ecology 88:1917–1923. doi:10.1890/06-1507.1

    Article  PubMed  Google Scholar 

  30. MacArthur R (1955) Fluctuations of animal populations, and a measure of community stability. Ecology 36:533–536

    Article  Google Scholar 

  31. Maraun M, Martens H, Migge S et al (2003) Adding to “the enigma of soil animal diversity”: fungal feeders and saprophagous soil invertebrates prefer similar food substrates. Eur J Soil Biol 39:85–95. doi:10.1016/S1164-5563(03)00006-2

    Article  Google Scholar 

  32. May RM (1972) Will a large complex system be stable. Nature 238:413–414. doi:10.1038/238413a0

    Article  CAS  PubMed  Google Scholar 

  33. McCann K (2000) The diversity–stability debate. Nature 405:228–233

    Article  CAS  PubMed  Google Scholar 

  34. McCann KS, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798. doi:10.1038/27427

    Article  CAS  Google Scholar 

  35. McCauley E, Murdoch WW (1990) Predator-prey dynamics in environments rich and poor in nutrients. Nature 343:455–457. doi:10.1038/343455a0

    Article  Google Scholar 

  36. Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  37. Neutel A-M, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123

    Article  CAS  PubMed  Google Scholar 

  38. Otto S, Rall BC, Brose U (2007) Allometric degree distributions stabilize food webs. Nature 450:1226–1229. doi:10.1038/nature06359

    Article  CAS  PubMed  Google Scholar 

  39. Pinheiro J, Bates D, DebRoy S, Sarkar D; R Core Team (2014) nlme: Linear and nonlinear mixed effects models. R package version 3.1–117. http://CRAN.R-project.org/package=nlme

  40. Quinn JL, Cresswell W (2012) Local prey vulnerability increases with multiple attacks by a predator. Oikos 121:1328–1334. doi:10.1111/j.1600-0706.2011.20088.x

    Article  Google Scholar 

  41. Rall BC, Guill C, Brose U (2008) Food-web connectance and predator interference dampen the paradox of enrichment. Oikos 117:202–213. doi:10.1111/j.2007.0030-1299.15491.x

    Article  Google Scholar 

  42. Rall BC, Brose U, Hartvig M et al (2012) Universal temperature and body-mass scaling of feeding rates. Philos Trans R Soc B Biol Sci 367:2923–2934. doi:10.1098/rstb.2012.0242

    Article  Google Scholar 

  43. Raspotnig G (2006) Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: oribatida). Exp Appl Acarol 39:177–194. doi:10.1007/s10493-006-9015-4

    Article  CAS  PubMed  Google Scholar 

  44. Raspotnig G, Föttinger P (2008) Analysis of individual oil gland secretion profiles in oribatid mites (acari: oribatida). Int J Acarol 34:409–417. doi:10.1080/17088180809434785

    Article  Google Scholar 

  45. Rosenzweig ML, Mac Arthur RH (1963) Graphical representation and stability conditions of predator–prey interactions. Am Nat 97:209. doi:10.1086/282272

    Article  Google Scholar 

  46. Scheffer M, De Boer RJ (1995) Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76:2270–2277

    Article  Google Scholar 

  47. Schneider FD, Scheu S, Brose U (2012) Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett 15:436–443. doi:10.1111/j.1461-0248.2012.01750.x

    Article  PubMed  Google Scholar 

  48. Skalski GT, Gilliam JF (2001) Functional responses with predator interference: viable alternatives to the Holling type II model. Ecology 82:3083–3092. doi:10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    Article  Google Scholar 

  49. Soetaert K, Petzoldt T, Setzer R (2010) Solving differential equations in R: package deSolve. J Stat Softw 33:1–25

    Google Scholar 

  50. Tollrian R, Harvell CD (eds) (1999) The ecology and evolution of inducible defenses. Princeton University Press, Princeton

    Google Scholar 

  51. Vos M, Kooi BW, DeAngelis DL, Mooij WM (2004) Inducible defences and the paradox of enrichment. Oikos 105:471–480. doi:10.1111/j.0030-1299.2004.12930.x

    Article  Google Scholar 

  52. Vucic-Pestic O, Birkhofer K, Rall BC et al (2010) Habitat structure and prey aggregation determine the functional response in a soil predator–prey interaction. Pedobiologia 53:307–312. doi:10.1016/j.pedobi.2010.02.003

    Article  Google Scholar 

  53. Yodzis P (1981) The stability of real ecosystems. Nature 289:674–676. doi:10.1038/289674a0

    Article  Google Scholar 

  54. Yodzis P, Innes S (1992) Body size and consumer–resource dynamics. Am Nat 139:1151–1175. doi:10.1086/285380

    Article  Google Scholar 

  55. Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, New Jersey

  56. Zuur AF, Ieno EN, Walker NJ et al (2009) Mixed effects models and extensions in ecology with R, 1st edn. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

We thank Lars Koerner for providing Stenus juno specimens, Ulrich Brose for discussion on the model and Nico Blüthgen and Andrew D. Barnes for discussion on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Heethoff.

Additional information

M. Heethoff and B. C. Rall equally contributed to this study and the drafting of the manuscript.

Handling Editor: Günther Raspotnig.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Heethoff, M., Rall, B.C. Reducible defence: chemical protection alters the dynamics of predator–prey interactions. Chemoecology 25, 53–61 (2015). https://doi.org/10.1007/s00049-014-0184-z

Download citation

Keywords

  • Oribatida
  • Archegozetes
  • Stenus
  • Functional response
  • Chemical defence
  • Stability
  • Apparent facilitation