Skip to main content
Log in

What makes you a potential partner? Insights from convergently evolved ant–ant symbioses

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Mutualistic, commensalistic or parasitic interactions are unevenly distributed across the animals and plants: in certain taxa, such interspecific associations evolved more often than in others. Within the ants, associations between species of the genera Camponotus and Crematogaster evolved repeatedly and include trail-sharing associations, where two species share foraging trails, and parabioses, where two species share a nest without aggression. Camponotus and Crematogaster may possess life-history traits that favour the evolution of associations. To identify which traits are affected by the association, we investigated a neotropical parabiosis of Ca. femoratus and Cr. levior and compared it to a paleotropical parabiosis and a trail-sharing association. The two neotropical species showed altered cuticular hydrocarbon profiles compared to non-parabiotic species accompanied by low levels of interspecific aggression. Both species occurred in two chemically distinct types. Camponotus followed artificial trails of Crematogaster pheromones, but not vice versa. The above traits were also found in the paleotropical parabiosis, and the trail-following results match those of the trail-sharing association. In contrast to paleotropical parabioses, however, Camponotus was dominant, had a high foraging activity and often fought against Crematogaster over food resources. We suggest three potential preadaptations for parabiosis. First, Crematogaster uses molecules as trail pheromones, which can be perceived by Camponotus, too. Second, nests of Camponotus are an important benefit to Crematogaster and may create a selection pressure for the latter to tolerate Camponotus. Third, there are parallel, but unusual, shifts in cuticular hydrocarbon profiles between neotropics and paleotropics, and between Camponotus and Crematogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams ES (1990) Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica 22:200–206

    Article  Google Scholar 

  • Akino T (2002) Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: staphylinidae) and Diaritiger fossulatus (Coleoptera : Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera : Formicidae). Chemoecology 12:83–89

    Article  CAS  Google Scholar 

  • Attygalle AB, Morgan ED (1985) Ant trail pheromones. Adv Insect Physiol 18:1–30

    Article  CAS  Google Scholar 

  • Boulay R, Cerdá X, Simon T, Roldan M, Hefetz A (2007) Intraspecific competition in the ant Camponotus cruentatus: should we expect the ‘dear enemy’ effect? Anim Behav 74:985–993

    Article  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Buczkowski G, Silverman J (2005) Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim Behav 69:741–749

    Google Scholar 

  • Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235

    Google Scholar 

  • Carlin NF, Hölldobler B (1983) Nestmate and kin recognition in interspecific mixed colonies of ants. Science 222:1027–1029

    Article  CAS  PubMed  Google Scholar 

  • Carroll CR, Janzen DH (1973) Ecology of foraging by ants. Annu Rev Ecol Syst 4:231–257

    Article  Google Scholar 

  • Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152

    Article  Google Scholar 

  • Dejean A (1996) Trail sharing in African arboreal ants. Sociobiology 27:1–9

    Google Scholar 

  • D’Ettorre P, Heinze J (2001) Sociobiology of slave-making ants. Acta Ethol 3:67–82

    Article  Google Scholar 

  • D’Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142

    Article  Google Scholar 

  • Emery V, Tsutsui ND (2013) Recognition in a social symbiosis: chemical phenotypes and nestmate recognition behaviors of neotropical parabiotic ants. PLoS One 8:e56492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Errard C, Regla JI, Hefetz A (2003) Interspecific recognition in Chilean parabiotic ant species. Insectes Soc 50:268–273

    Article  Google Scholar 

  • Espadaler X, Martí S (1994) La feromona de pista de Crematogaster Lund (Hymenoptera, Formicidae): Vàlida per tot el gènere? Sessió d’Entomologia ICHN-SCL 8:81–86

    Google Scholar 

  • Fiedler K (1998) Lycaenid-ant interactions of the Maculinea type: tracing their historical roots in a comparative framework. J Insect Conserv 2:3–14

    Article  Google Scholar 

  • Forel A (1898) La parabiose chez les fourmis. Bull Soc Vaudoise des Sci Nat 34:380–384

    Google Scholar 

  • Geiselhardt SF, Peschke J, Nagel P (2007) A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften 94:871–894

    Article  CAS  PubMed  Google Scholar 

  • Gobin B, Peeters C, Billen J, Morgan ED (1998) Interspecific trail following and commensalism between the ponerine ant Gnamptogenys menadensis and the formicine ant Polyrhachis rufipes. J Insect Behav 11:361–369

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Hölldobler B, Möglich M, Maschwitz U (1981) Myrmecophilic relationship of Pella (Coleoptera: Staphylinidae) to Lasius fuliginosus (Hymenoptera: Formicidae). Psyche 88:347–374

    Article  Google Scholar 

  • Katzav-Gozansky T, Boulay R, Ionescu-Hirsh A, Hefetz A (2008) Nest volatiles as modulators of nestmate recognition in the ant Camponotus fellah. J Insect Physiol 54:378–385

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann E, Maschwitz U (2006) Ant-gardens of tropical Asian rainforests. Naturwissenschaften 93:216–227

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann E, Malsch AKF, Erle M, Maschwitz U (2003) Compound nesting of Strumigenys sp. (Myrmicinae) and Diacamma sp. (Ponerinae), and other nesting symbioses of myrmicine and ponerine ants in Southeast Asia. Insectes Soc 50:88–97

    Article  Google Scholar 

  • Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR (ed) Social insects. Academic Press, New York, San Francisco, London, pp 339–413

    Google Scholar 

  • Knaden M, Wehner R (2003) Nest defense and conspecific enemy recognition in the desert ant Cataglyphis fortis. J Insect Behav 16:717–730

    Article  Google Scholar 

  • Kroiss J, Svatoš A, Kaltenpoth M (2011) Rapid identification of insect CHCs using gas chromatography—ion-trap mass spectrometry. J Chem Ecol 27:420–427

    Article  Google Scholar 

  • Lambardi D, Dani FR, Turillazzi S, Boomsma JJ (2007) Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav Ecol Sociobiol 61:843–851

    Article  Google Scholar 

  • Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599

    Article  CAS  PubMed  Google Scholar 

  • Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151:1–150

    Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Menzel F, Blüthgen N (2010) Parabiotic associations between tropical ants: equal partnership or parasitic exploitation? J Anim Ecol 79:71–81

    Article  CAS  PubMed  Google Scholar 

  • Menzel F, Schmitt T (2011) Tolerance requires the right smell: first evidence for interspecific selection on chemical recognition cues. Evolution 66–3:896–904

    Google Scholar 

  • Menzel F, Blüthgen N, Schmitt T (2008a) Tropical parabiotic ants: highly unusual cuticular substances and low interspecific discrimination. Front Zool 5:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Menzel F, Linsenmair KE, Blüthgen N (2008b) Selective interspecific tolerance in tropical CrematogasterCamponotus associations. Anim Behav 75:837–846

    Article  Google Scholar 

  • Menzel F, Schmitt T, Blüthgen N (2009) Intraspecific nestmate recognition in two parabiotic ant species: acquired recognition cues and low inter-colony discrimination. Insectes Soc 56:251–260

    Article  Google Scholar 

  • Menzel F, Pokorny T, Blüthgen N, Schmitt T (2010a) Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecol Entomol 35:495–503

    Article  Google Scholar 

  • Menzel F, Woywod M, Blüthgen N, Schmitt T (2010b) Behavioural and chemical mechanisms behind a Mediterranean ant–ant association. Ecol Entomol 35:711–720

    Article  Google Scholar 

  • Menzel F, Staab M, Chung AYC, Gebauer G, Blüthgen N (2012) Trophic ecology of parabiotic ants: do the partners have similar food niches? Austral Ecol 37:537–546

    Article  Google Scholar 

  • Menzel F, Blüthgen N, Tolasch T, Conrad J, Beifuß U, Beuerle T, Schmitt T (2013) Crematoenones—a novel substance class exhibited by ants functions as appeasement signal. Front Zool 10:32

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moneti G, Pieraccini G, Dani F, Turillazzi S, Favretto D, Traldi P (1997) Ion-molecule reactions of ionic species from acetonitrile with unsaturated hydrocarbons for the identification of the double-bond position using an ion trap. J Mass Spectrom 32:1371–1373

    Article  Google Scholar 

  • Morgan ED (2009) Trail pheromones of ants. Physiol Entomol 34:1–17

    Article  CAS  Google Scholar 

  • Morgan ED, Brand JM, Mori K, Keegans SJ (2004) The trail pheromone of the ant Crematogaster castanea. Chemoecology 14:119–120

    Article  CAS  Google Scholar 

  • Oettler J, Schmitt T, Herzner G, Heinze J (2008) Chemical profiles of mated and virgin queens, egg-laying intermorphs and workers of the ant Crematogaster smithi. J Insect Physiol 54:672–679

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Community ecology package: package ‘vegan’ 2.0-0. www.r-project.org

  • Oldham NJ, Svatoš A (1999) Determination of the double bond position in functionalized monoenes by chemical ionization ion-trap mass spectrometry using acetonitrile as a reagent gas. Rapid Commun Mass Spectrom 13:331–336

    Article  CAS  Google Scholar 

  • Orivel J, Dejean A (1999) Selection of epiphyte seeds by ant-garden ants. Ecoscience 6:51–55

    Google Scholar 

  • Orivel J, Leroy C (2010) The diversity and ecology of ant gardens (Hymenoptera: formicidae; Spermatophyta: Angiospermae). Myrmecol News 14:73–85

    Google Scholar 

  • Orivel J, Errard C, Dejean A (1997) Ant gardens: interspecific recognition in parabiotic ant species. Behav Ecol Sociobiol 40:87–93

    Article  Google Scholar 

  • Parr CL, Gibb H (2010) Competition and the role of dominant ants. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 77–96

    Google Scholar 

  • Santini G, Tucci L, Ottonetti L, Frizzi F (2007) Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol Entomol 32:319–326

    Article  Google Scholar 

  • Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, Görlitz/Tauer

    Google Scholar 

  • Swain RB (1980) Trophic competition among parabiotic ants. Insectes Soc 27:377–390

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. http://www.R-project.org. R Foundation for Statistical Computing, Vienna

  • Vantaux A, Dejean A, Dor A, Orivel J (2007) Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes Soc 54:95–99

    Article  Google Scholar 

  • Weißflog A (2001) Freinestbau von Ameisen (Hymenoptera: Formicidae) in der Kronenregion feuchttropischer Wälder Südostasiens. Frankfurt am Main: PhD Thesis, J. W. Goethe-Universität

  • Wheeler WM (1921) A new case of parabiosis and the “ant gardens” of British Guiana. Ecology 2:89–103

    Article  Google Scholar 

  • Wilson EO (1965) Trail sharing in ants. Psyche 72:2–7

    Article  Google Scholar 

  • Wilson EO (1987) The arboreal ant fauna of Peruvian amazon forests: a first assessment. Biotropica 19:245–251

    Article  Google Scholar 

  • Witte V, Janssen R, Eppenstein A, Maschwitz U (2002) Allopeas myrmekophilos (Gastropoda, Pulmonata), the first myrmecophilous mollusc living in colonies of the ponerine army ant Leptogenys distinguenda (Formicidae, Ponerinae). Insectes Soc 49:301–305

    Article  Google Scholar 

  • Witte V, Lehmann L, Lustig A, Maschwitz U (2009) Polyrhachis lama, a parasitic ant with an exceptional mode of social integration. Insectes Soc 56:301–307

    Article  Google Scholar 

  • Yéo J, Molet M, Peeters C (2006) When David and Goliath share a home: compound nesting of Pyramica and Platythyrea ants. Insectes Soc 53:435–438

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Laboratoire Environnement de Petit Saut for furnishing logistical support and the Les Nouragues Research Station for research permission. This work has benefited from an “Investissement d’Avenir” grant managed by the Agence Nationale de la Recherche (CEBA, ref. ANR-10-LABX-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Menzel.

Additional information

Handling Editor: Michael Heethoff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental figures: Fig. S1 Substance class by chain length for each of the samples analysed. Each barplot represents one colony. The bars give the relative abundance of CHC, separated by chain length and with different colours for each substance class. The bars of each barplot add up to 100 %. Note that the graphs do not show differences between methyl group positions or (for alkenes) retention times among substances of the same chain length.

Fig. S2 NMDS ordination of CHC of Crematogaster levior, Cr. carinata and Camponotus femoratus.

Supplemental Tables Table S1. Cuticular hydrocarbons of Camponotus femoratus, Crematogaster levior and Crematogaster carinata. Each column represents one colony, with collection site and colony code given above. The numbers give the relative abundance of each substance.

Table S2. PERMANOVA results from aggression assays for the four species combinations. The aggression index was determined for the aggression of residents towards an intruder; species combination is given as ‘resident-intruder’.

Table S3. Results for foraging ecology, data from Vantaux et al. (2007).

Supplementary material 1 (PDF 102 kb)

Supplementary material 2 (XLS 89 kb)

Supplementary material 3 (PDF 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzel, F., Orivel, J., Kaltenpoth, M. et al. What makes you a potential partner? Insights from convergently evolved ant–ant symbioses. Chemoecology 24, 105–119 (2014). https://doi.org/10.1007/s00049-014-0149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-014-0149-2

Keywords

Navigation