Skip to main content

Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles

Abstract

Within beetles, those species that are adapted to life on plants have developed widened tarsi with specialised hairy attachment structures. The capability to adhere to smooth surfaces is based on a liquid film on the surface of these structures, the composition of which is similar to the cuticular lipids. By means of a cluster analysis based on chemical similarities between samples obtained from tarsi or elytra of 35 species using solid phase microextraction, the present study strongly suggests that this chemical congruence is a principle in beetles. This supports the idea of tarsal liquids being part of the cuticular lipid layer and contributes to the understanding of liquid-mediated attachment systems.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Akino T, Terayama M, Wakamura A, Yamaoka R (2002) Intraspecific variation of cuticular hydrocarbon composition in Formica japonica Motschoulsky (Hymenoptera: Formicidae). Zool Sci 19:1155–1165

    PubMed  Article  CAS  Google Scholar 

  • Arsene C, Schulz S, Van Loon JJA (2002) Chemical polymorphism of the cuticular lipids of the cabbage white Pieris rapae. J Chem Ecol 28:2627–2631

    PubMed  Article  CAS  Google Scholar 

  • Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T (2000) Defense by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zoology 103:1–6

    Google Scholar 

  • Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morph 255:24–43

    PubMed  Article  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthopod Struct Dev 33:3–30

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phyl 64:3–25

    Google Scholar 

  • Blomquist GJ (2010) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Blomquist GJ, Bagnères AG (eds) (2010) Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Böröczky K, Park KC, Minard RD, Jones TH, Baker TC, Tumlinson JH (2008) Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens, and Manduca sexta. J Insect Physiol 54:1385–1391

    PubMed  Article  Google Scholar 

  • Buckner JS (2010) Oxygenated derivatives of hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons. Cambridge University Press, Cambridge

    Google Scholar 

  • Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865

    Article  CAS  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    PubMed  Article  Google Scholar 

  • Geiselhardt S, Otte T, Hilker M (2009) The role of cuticular hydrocarbons in male mating behavior of the mustard leaf beetle, Phaedon cochleariae (F.). J Chem Ecol 35:1162–1171

    PubMed  Article  CAS  Google Scholar 

  • Geiselhardt SF, Geiselhardt S, Peschke K (2009) Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19:185–193

    Article  CAS  Google Scholar 

  • Geiselhardt SF, Lamm S, Gack C, Peschke K (2010) Interaction of liquid epicuticular hydrocarbons and tarsal adhesive secretion in Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). J Comp Physiol A 196:369–378

    Article  CAS  Google Scholar 

  • Gorb S, Gorb E, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J Exp Biol 204:1421–1431

    PubMed  CAS  Google Scholar 

  • Gush TJ, Bentley BL, Prestwich GD, Thorne BL (1985) Chemical variation in defensive secretions of four species of Nasutitermes. Biochem Syst Ecol 13:329–336

    Article  CAS  Google Scholar 

  • Hamers L, Hemeryck Y, Herweyers G, Janssen M, Keters H, Rousseau R, Vanhoutte A (1989) Similarity measures in scientometric research—the jaccard index versus salton cosine formula. Inf Process Manag 25:315–318

    Article  Google Scholar 

  • Hasenfuss I (1977) Die Herkunft der Adhäsionsflüssigkeit bei Insekten. Zoomorphology 87:51–64

    Article  Google Scholar 

  • Haverty MI, Grace JK, Nelson LJ, Yamamoto RT (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813–1834

    Article  CAS  Google Scholar 

  • Holotík Š, Leško J, Krupčík J, Tesařik K (1976) Identification of acetates of secondary straight-chain alcohols by gas chromatography–mass spectrometry. Chromatographia 9:443–446

    Article  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    PubMed  Article  CAS  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22:222–228

    Google Scholar 

  • Jaccard P (1901) Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull Soc Vaudoise Sci Nat 37:547–579

    Google Scholar 

  • Kaib M, Brandl R, Bagine RKN (1991) Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176–179

    Article  CAS  Google Scholar 

  • Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47–53

    Article  CAS  Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol B 81:263–273

    Article  Google Scholar 

  • Martin S, Drijfhout F (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161

    PubMed  Article  CAS  Google Scholar 

  • McFarlane JS, Tabor D (1950) Adhesion of solids and the effect of surface films. Proc R Soc Lond A 202:224–243

    Article  CAS  Google Scholar 

  • Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from eggs of the tobacco hornworm. Biochemistry 9:4601–4611

    PubMed  Article  CAS  Google Scholar 

  • Nelson DR, Sukkestad DR, Zaylskie RG (1972) Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. J Lipid Res 13:413–421

    PubMed  CAS  Google Scholar 

  • Nowbahari E, Lenoir A, Clément JL, Lange C, Bagnères AG, Joulie C (1990) Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem Syst Ecol 18:63–73

    Article  CAS  Google Scholar 

  • Page M, Nelson LJ, Forschler BT, Haverty MI (2002) Cuticular hydrocarbons suggest three lineages in Reticulitermes (Isoptera: Rhinotermitidae) from North America. Comp Biochem Physiol B 131:305–324

    PubMed  Article  Google Scholar 

  • Pomonis JG (1989) Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae). Isolation, identification, and quantification as a function of age, sex and irradiation. J Chem Ecol 15:2301–2317

    Article  CAS  Google Scholar 

  • Pomonis JG, Nelson DR, Fatland CL (1980) Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J Chem Ecol 6:965–972

    Article  CAS  Google Scholar 

  • Pomonis JG, Hakk H, Fatland C (1989) Synthetic methyl- and dimethylalkanes. J Chem Ecol 15:2319–2332

    Article  CAS  Google Scholar 

  • Schulz S (2001) Composition of the silk lipids of the spider Nephila clavipes. Lipids 36:637–647

    PubMed  Article  CAS  Google Scholar 

  • Steiger S, Peschke K, Francke W, Müller JK (2007) The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc R Soc Lond B 274:2211–2220

    Article  CAS  Google Scholar 

  • Stork NE (1980) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linn Soc 68:173–306

    Article  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Stefan Lamm, Christan Hamm, Johannes Gowin and Christian Hanner for helping with the collection of data. Donation of beetles by Hannelore Baudendistel, Ulrike Füssel, Joseph K. Müller and Monika Hilker are greatly appreciated. We also are grateful for the help of Alois Herzig at the Biologische Station Illmitz, where some of the beetles were collected. Furthermore, Wolfgang Pankow and Christian Maus helped with the determination of some species and two anonymous reviewers provided comments on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie F. Geiselhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

49_2011_77_MOESM1_ESM.xls

Species used in the cluster analysis with chemical composition of SPME samples of elytra (E) and tarsi (T; mediane; % total peak area). Collection site is given at the bottom of the table (XLS 468 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geiselhardt, S.F., Geiselhardt, S. & Peschke, K. Congruence of epicuticular hydrocarbons and tarsal secretions as a principle in beetles. Chemoecology 21, 181 (2011). https://doi.org/10.1007/s00049-011-0077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00049-011-0077-3

Keywords

  • Coleoptera
  • Cuticular hydrocarbons
  • Tarsal secretion
  • Cluster analysis
  • Adhesion
  • SPME