, Volume 20, Issue 4, pp 243–253 | Cite as

First insights into the chemical defensive system of the erotylid beetle, Tritoma bipustulata

  • Kai Drilling
  • Konrad Dettner
Research Paper


The present study provides the first insights into the chemical defensive system of the erotylid beetle, Tritoma bipustulata, and furthermore reports the previously hardly known ability of abdominal reflex bleeding in this coleopteran family. The defensive chemistry of the secretion of pronotal glands, abdominal reflex blood as well as of the haemolymph were analysed by GC-MS. The different secretions were dominated by aromatic compounds; in addition, we detected alkenes, ketones, organic acids as well as a single sesquiterpene. The majority of these detected compounds had strong antimicrobial properties in microbiological assays with entomopathogenic micro-organisms. In feeding bioassays with ants, only benzyl alcohol, benzothiazole, indole and 3-methylindole, detected in the abdominal reflex blood, were significantly deterrent.


Erotylidae Gland Reflex bleeding Repellent Lasius flavus 



We like to thank Andrea Liehr (University of Bayreuth) for her skilful assistance with the GC/MS-technique, and Andreas Schierling (University of Bayreuth) for comments on the behavioural and microbiological assays. Furthermore we thank W. Francke (University of Hamburg) for helpful comments on the manuscript.


  1. Aldrich JR (1988) Chemical ecology of the Heteroptera. Annu Rev Entomol 33:211–238CrossRefGoogle Scholar
  2. Andrews JM (2005) BSAC standardized disc susceptibility testing method (version 4). J Antimicrob Chemother 56:60–76CrossRefPubMedGoogle Scholar
  3. Arrow GJ (1925) Coleoptera, Clavicornia, Erotylidae, Languriidae, and Endomychidae. In: Shipley AE, Scott A (eds) The fauna of British India, including Ceylon and Burma. Taylor and Francis, London, XVI + 416 ppGoogle Scholar
  4. Bartelt RJ (1999) Sap beetles. In: Hardie J, Minks AK (eds) Pheromones of non-lepidopteran insects associated with agricultural plants. CABI Publishing, Oxford, pp 69–89Google Scholar
  5. Benfield EF (1974) Autohemorrhage in two stoneflies (Plecoptera) and its effectiveness as a defense mechanism. Ann Entomol Soc Am 67(5):739–742Google Scholar
  6. Blum MS (1969) Benzaldehyde: defensive secretion of a harvester ant. Comp Biochem Physiol 29:461–465CrossRefPubMedGoogle Scholar
  7. Blum MS (1981) Chemical defenses of Arthropods. Academic Press, Toronto, p 562Google Scholar
  8. Blum MS, Sannasi A (1974) Reflex bleeding in the lampyrid Photinus pyralis: defensive function. J Insect Physiol 20:451–460CrossRefGoogle Scholar
  9. Boland W, Ney P, Jaenicke L, Gassmann G (1984) A ‘closed-loop-stripping’ technique as a versatile tool for metabolic studies of volatiles. In: Schreier P (ed) Analysis of Volatiles Berlin. Walter de Gruyter, pp 371–373Google Scholar
  10. Bouchard P, Hsiung CC, Yaylayan VA (1997) Chemical analysis of defense secretions of Sipylodea sipylus and their potential use as repellents against rats. J Chem Ecol 23(8):2049–2057CrossRefGoogle Scholar
  11. Brossut R (1983) Allomonal secretions in cockroaches. J Chem Ecol 9(1):143–158CrossRefGoogle Scholar
  12. Carrel JE, Eisner T (1974) Cantharidin: potent feeding deterrent to insects. Science 183:755–757CrossRefPubMedGoogle Scholar
  13. Chûjô M (1969) Erotylidae (Insecta: Coleoptera) Fauna Japonica. Academic Press of Japan, TokyoGoogle Scholar
  14. Daloze D, Braekman J-C, Pasteels JM (1994) Ladybirds defence alkaloids: structural, chemotaxonomic and biosynthetic aspects (Col.: Coccinellidae). Chemoecology 5(3/4):173–183CrossRefGoogle Scholar
  15. de Jong PW, Holloway GJ, Brakefield PM, de Vos H (1991) Chemical defence in ladybird beetles (Coccinellidae). II. Amount of reflex fluid, the alkaloid adaline and individual variation in defence in 2-spot ladybirds (Adalia bipunctata). Chemoecology 2:15–19CrossRefGoogle Scholar
  16. Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32:17–48CrossRefGoogle Scholar
  17. Dettner K (1991) Chemische Abwehrmechanismen bei Kurzflüglern (Coleoptera: Staphylinidae). Jahresber Naturwiss Vereins Wuppertal 44:50–58Google Scholar
  18. Dettner K, Fettköther R, Ansteeg O, Deml R, Liepert C, Petersen B, Haslinger E, Francke W (1992) Insecticidal fumigants from defensive glands of insects—a fumigant test with adults of Drosophila melanogaster. J Appl Entomol 113:128–137CrossRefGoogle Scholar
  19. Dormán G, Prestwich GD (1994) Benzophenone photophores in biochemistry. Biochemistry 33(19):5661–5673CrossRefPubMedGoogle Scholar
  20. Drilling K, Dettner K (2009) Electrophysiological responses of four fungivorous coleoptera to volatiles of Trametes versicolor: implications for host selection. Chemoecology 19(2):109–115CrossRefGoogle Scholar
  21. Drilling K, Dettner K, Klass K-D (2010) Morphology of the pronotal compound glands in Tritoma bipustulata (Coleoptera: Erotylidae). Org Divers Evol 10(3):205–214CrossRefGoogle Scholar
  22. Dytham C (2001) Choosing and using statistics: a biologist’s guide. Blackwell, London, p 218Google Scholar
  23. Francke W, Dettner K (2005) Chemical signalling in beetles. Top Curr Chem 240:85–166Google Scholar
  24. Hilker M, Schulz F (1994) Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. J Chem Ecol 20(5):1075–1093CrossRefGoogle Scholar
  25. Jackson BD, Keegans SJ, Morgan ED (1990) Trail pheromone of the ant Tetramorium meridionale. Naturwissenschaften 77:294–296CrossRefGoogle Scholar
  26. Johnson CN (1996) Interactions between mammals and ectomycorrhizal fungi. Tree 11(12):503–507Google Scholar
  27. Klinger R, Maschwitz U (1977) The defensive gland of Omaliinae (Coleoptera: Staphylinidae). J Chem Ecol 3(4):401–410CrossRefGoogle Scholar
  28. Knudsen JT, Tolisten L, Bergstrom LG (1993) Floral scent—a checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253–280CrossRefGoogle Scholar
  29. Koch K (1989) Die Käfer Mitteleuropas, Ökologie, Band 2. Goecke and Evers Verlag, KrefeldGoogle Scholar
  30. Laurent P, Braekman J-C, Daloze D (2005a) Insect chemical defense. Top Curr Chem 240:167–229Google Scholar
  31. Laurent P, Daloze D, Braekman J-C, Pasteels JM (2005b) Stenotarsol, a new terpenoid from Stenotarsus subtilis (Coleoptera: Endomychidae). Tetrahedron Lett 46:931–932CrossRefGoogle Scholar
  32. Leal WS (1997) Evolution of sex pheromone communication in plant-feeding scarab beetles. In: Cardè R, Minks AK (eds) Insect pheromone research: new directions. Chapman and Hall, New YorkGoogle Scholar
  33. Leschen RAB (2003) Erotylidae (Insecta: Coleoptera: Cucujoidea): phylogeny and review. Fauna of New Zealand 47, 108 ppGoogle Scholar
  34. Leschen RAB, Skelley PA, McHugh JV (2010) 10.7. Erotylidae Leach, 1815. In: Leschen RAB, Beutel RG, Lawrence J (eds) Coleoptera, Beetles, vol 2. Morphology and systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Handbuch der Zoologie/Handbook of Zoology IV/39. Walter de Gruyter, Berlin, New York, pp 311–319Google Scholar
  35. Martin MM (1979) Biochemical implications of insect mycophagy. Biol Rev 54:1–21Google Scholar
  36. Matsuda K (1982) Reflex bleeding in Gallerucida nigromaculata BALY (Coleoptera: Chrysomelidae). Appl Entomol Zool 17(2):277–278Google Scholar
  37. McIndoo NE (1916) The reflex “bleeding” of the cocclinellid beetle, Epilachna borealis. Ann Entomol Soc Am 9(2):201–223Google Scholar
  38. Morgan ED (2004) Biosynthesis in insects. The Royal Society of Chemistry, CambridgeGoogle Scholar
  39. Oehlschlager AC, King GGS, Pierce HD Jr, Pierce AM, Slessor KM, Millar JG, Borden JH (1987) Chirality of macrolide pheromones of grain beetles in the genera Oryzaephilus and Cryptolestes and its implications for species specificity. J Chem Ecol 13(6):1543–1554CrossRefGoogle Scholar
  40. Oehlschlager AC, Pierce AM, Pierce HD Jr, Borden JH (1988) Chemical communication in cucujid grain beetles. J Chem Ecol 14(11):2071–2098CrossRefGoogle Scholar
  41. Pasteels JM, Braekman J-C, Daloze D (1988) Chemical defense in the Chrysomelidae. In: Jolivet P, Petitpierre E, Hsiao TH (eds) Biology of Chrysomelidae. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  42. Pasteels JM, Rowell-Rahier M, Braekman J-C, Daloze D (1989) Evolution of exocrine chemical defense in leaf beetles (Coleoptera: Chrysomelidae). Experientia 45:295–300CrossRefGoogle Scholar
  43. Pasteels JM, Rowell-Rahier M, Braekman J-C, Daloze D (1994) Chemical defence of adult leaf beetles updated. In: Jolivet PH, Cox ML, Petipierre E (eds) Novel aspects of the biology of Chrysomelidae. Kluwer Academic Publishers, NetherlandsGoogle Scholar
  44. Peck DC (2000) Reflex bleeding in froghoppers (Homoptera: Cercopidae): variation in behaviour and taxonomic distribution. Ann Entomol Soc Am 93(5):1186–1194CrossRefGoogle Scholar
  45. Roth LM, Eisner T (1962) Chemical defenses of arthropods. Annu Rev Entomol 7:107–136CrossRefGoogle Scholar
  46. Steidle JLM, Dettner K (1993) Chemistry and morphology of the tergal gland of freeliving adult Aleocharinae (Coleoptera: Staphylinidae) and its phylogenetic significance. Syst Entomol 18:149–168CrossRefGoogle Scholar
  47. Thakoew P, Weißbecker B, Schütz S (2006) Volatile organic compounds emitted from fungal-rotting beech (Fagus sylvatica). Mitt Dtsch Ges allg angew Entomol 15:157–160Google Scholar
  48. Tschinkel WR (1975) A comparative study of the chemical defensive system of tenebrionid beetles: chemistry of the secretions. J Insect Physiol 21:753–783CrossRefGoogle Scholar
  49. Vogt H (1967) 54. Familie: Erotylidae. In: Freude H, Harde KW, Lohse GA (eds) Die Käfer Mitteleuropas, Band 7. Goecke and Evers Verlag, Krefeld, pp 104–109Google Scholar
  50. Wallace JB, Blum MS (1971) Reflex bleeding: a highly refined defensive mechanism in Diabrotica larvae (Coleoptera: Chrysomelidae). Ann Entomol Soc Am 64(5):1021–1024Google Scholar
  51. Węgrzynowicz P (2002) Morphology, phylogeny and classification of the family Erotylidae based on adult characters (Coleoptera: Cucujoidea). Genus 13(4):435–504Google Scholar

Copyright information

© Springer Basel AG 2010

Authors and Affiliations

  1. 1.Department for Animal Ecology IIUniversity of BayreuthBayreuthGermany
  2. 2.Senckenberg Natural History Collections Dresden, Museum of ZoologyDresdenGermany

Personalised recommendations