Skip to main content

Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques

Abstract

Tarsal substrate adhesion in insects is based on the effect of a thin film of liquid in the contact zone, which is deposited as droplets on the surface an insect has walked on, but as yet, little is known about the chemical composition of the liquid. In the present study, interference reflection microscopical images of the tarsal contact and footprints of Gastrophysa viridula (Coleoptera: Chrysomelidae) are depicted and the chemical composition of tarsal liquids and cuticular components are investigated by means of solid-phase microextraction and solvent extraction of whole beetles and footprints. Based on this comparative methodical approach, we are first to provide evidence from direct sampling for the chemical congruence of cuticular lipids and tarsal liquid in beetles. Furthermore, differences resulting from the applied sampling techniques are assessed and advantages of the respective methods are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aitchison J (1986) The statistical analysis of compositional data: monographs in statistics and applied probability. Chapmann and Hall, London

    Google Scholar 

  • Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  • Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T (2000) Defense by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zoology 103:1–6

    Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morph 255:24–43

    Article  PubMed  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthropod Struct Dev 33:3–30

    Article  PubMed  Google Scholar 

  • Bullock JMR, Drechsler P, Federle W (2008) Comparison of smooth and hairy attachment pads in insects: friction, adhesion and mechanisms for direction-dependence. J Exp Biol 211:3333–3343

    Article  PubMed  Google Scholar 

  • Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865

    Article  CAS  Google Scholar 

  • Deroe C, Pasteels JM (1982) Distribution of adult defense glands in chrysomelids (Coleoptera: Chrysomelidae) and its significance in the evolution of defense mechanisms within the family. J Chem Ecol 8:67–82

    Article  Google Scholar 

  • Doolittle RE, Proveaux AT, Alborn HT, Heath RR (1995) Quadrupole storage mass spectrometry of mono- and dimethylalkanes. J Chem Ecol 21:1677–1695

    Article  CAS  Google Scholar 

  • Drechsler P, Federle W (2006) Biomechanics of smooth adhesive pads in insects: influence of tarsal secretion on attachment performance. J Comp Physiol A 192:1213–1222

    Article  Google Scholar 

  • Eggenberger F, Heilporn S, Daloze D, Pasteels JM (1994) Sexual dimorphism in the lipid fraction of the defensive secretion of Gastrophysa viridula (Coleoptera: Chrysomelidae). Experientia 50:766–770

    Article  CAS  Google Scholar 

  • Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32:907–915

    Article  CAS  PubMed  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  Google Scholar 

  • Federle W, Baumgartner W, Hölldobler B (2004) Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent. J Exp Biol 206:67–74

    Article  Google Scholar 

  • Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM (2006) Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface 3:689–697

    Article  CAS  PubMed  Google Scholar 

  • Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond position in linear alkenes. J Chromatogr 219:379–384

    Article  CAS  Google Scholar 

  • Geiselhardt S, Jakobschy D, Ockenfels P, Peschke K (2008) A sex pheromone in the desert tenebrionid beetle Parastizopus armaticeps. J Chem Ecol 34:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer, Dordrecht

    Google Scholar 

  • Hasenfuss I (1977) Die Herkunft der Adhäsionsflüssigkeit bei Insekten. Zoomorphology 87:51–64

    Article  Google Scholar 

  • Howard RW, Blomquist GJ (1982) Chemical ecology and insect biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149–172

    Article  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculta (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22:222–228

    Google Scholar 

  • Jiao Y, Gorb S, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    CAS  PubMed  Google Scholar 

  • Kosaki A, Yamaoka R (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Jpn J Appl Entomol Zool 40:47–53

    CAS  Google Scholar 

  • Lockey KH (1980) Insect cuticular hydrocarbons. Comp Biochem Physiol B 65:457–462

    Article  Google Scholar 

  • Lockey KH (1985) Insect cuticular lipids. Comp Biochem Physiol B 81:263–273

    Article  Google Scholar 

  • McFarlane JS, Tabor D (1950) Adhesion of solids and the effect of surface films. Proc R Soc Lond A 202:224–243

    Article  CAS  Google Scholar 

  • Monnin T, Malosse C, Peeters C (1998) Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. J Chem Ecol 24:473–490

    Article  CAS  Google Scholar 

  • Nelson DR, Sukkestad DR (1970) Normal and branched aliphatic hydrocarbons from eggs of the tobacco hornworm. Biochemistry 9:4601–4611

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Sukkestad DR, Zaylskie RG (1972) Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm. J Lipid Res 13:413–421

    CAS  PubMed  Google Scholar 

  • Nelson DR, Adams TS, Fatland CL (2003) Hydrocarbons in the surface wax of eggs and adults of the Colorado potato beetle, Leptinotarsa decemlineata. Comp Biochem Physiol B 134:447–466

    Article  PubMed  Google Scholar 

  • Nikolova N, Rezanka T, Nikolova-Damyanova B, Kalushkov P (1999) Hydrocarbons in adult Chrysomela vigintipunctata (Scopoli) (Coleoptera: Chrysomelidae). Comp Biochem Physiol B 123:67–77

    Article  Google Scholar 

  • Peterson MA, Dobler S, Larson EL, Juárez D, Schlarbaum T, Monsen KJ, Francke W (2007) Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridising Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:87–96

    Article  CAS  Google Scholar 

  • Pomonis JG, Nelson DR, Fatland CL (1980) Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J Chem Ecol 6:965–972

    Article  CAS  Google Scholar 

  • Scribe P, Guezennec J, Dagaut J, Pepe C, Saliot A (1988) Identification of the position and the stereochemistry of the double bond in monounsaturated fatty acid methyl esters by gas chromatography/mass spectrometry of dimethyl disulfide derivatives. Anal Chem 60:928–931

    Article  CAS  Google Scholar 

  • Steiger S, Peschke K, Francke W, Müller JK (2007) The smell of parents: breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc R Soc Lond B 274:2211–2220

    Article  CAS  Google Scholar 

  • Stork NE (1980) A scanning electron microscope study of tarsal adhesive setae in the Coleoptera. Zool J Linn Soc 68:173–306

    Article  Google Scholar 

  • Sugawara F, Kobayashi A, Yamashita K, Matsuda K (1978) Identification of octadecyl acetate and (Z)-11-eicosenyl acetate, major components of the defensive secretion of Gastrophysa atroceanea Motschulsky. Agric Biol Chem 42:689–695

    Google Scholar 

  • Sugeno W, Hori M, Matsuda K (2006) Identification of the contact sex pheromone of Gastrophysa atrocyanea (Coleoptera: Chrysomelidae). Appl Entomol Zool 41:269–276

    Article  CAS  Google Scholar 

  • Tentschert J, Bestmann H-J, Heinze J (2002) Cuticular compounds of workers and queens in two Leptothorax ant species—a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecology 12:15–21

    Article  CAS  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  CAS  PubMed  Google Scholar 

  • Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613

    Article  PubMed  Google Scholar 

  • Walker G (1993) Adhesion to smooth surfaces by insects—a review. Int J Adhes Adhes 13:3–7

    Article  Google Scholar 

  • Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool Lond A 205:297–307

    Google Scholar 

  • Wilms J, Eltz T (2008) Foraging scent marks of bumblebees: footprint cues rather than pheromone signals. Naturwissenschaften 95:149–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Pawliszyn J (1993) Headspace solid-phase microextraction. Anal Chem 65:1843–1852

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Klaus-Günter Collatz and co-workers for useful comments on beetle breeding. Walter Federle kindly introduced SFG to the technique of interference reflection microscopy at his laboratory and let us use the pictures for this publication. Moreover, we would like to thank two anonymous reviewers for useful comments on an earlier draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Frauke Geiselhardt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geiselhardt, S.F., Geiselhardt, S. & Peschke, K. Comparison of tarsal and cuticular chemistry in the leaf beetle Gastrophysa viridula (Coleoptera: Chrysomelidae) and an evaluation of solid-phase microextraction and solvent extraction techniques. Chemoecology 19, 185 (2009). https://doi.org/10.1007/s00049-009-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00049-009-0021-y

Keywords

  • Solid-phase microextraction
  • Footprints
  • Tarsal liquid
  • Cuticular hydrocarbons
  • Gastrophysa
  • Chrysomelidae
  • Coleoptera