Skip to main content

Advertisement

Log in

Molecular hybridization method for obtaining paeonol-based fibrate derivatives with potent lipid-lowering and hepatoprotective activity

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Molecular hybridization method was applied to design and synthesize a series of target compounds paeonol-based fibrate derivatives. The target compound was screened using a Triton WR-1339 induced hyperlipidemia mouse model, and compound T9 was found to have good lipid-lowering activity. The dose-dependent study of its lipid-lowering activity was also conducted. To further evaluate the lipid-lowering activity of compound T9, a hyperlipidemic mouse model induced by high fat emulsion can be used. The findings of the research illustrate that T9 is capable of significantly decreasing blood lipid levels, including TG, TC, LDL-C, and increasing HDL-C. The results of liver tissue oil red O staining and HE staining demonstrated that T9 improved the hepatic lipid accumulation, thus decreasing AST and ALT levels and protecting against hyperlipidemic liver injury. Studies into the lipid-lowering effect of T9 have indicated that it can upregulate PPAR-α protein expression in liver tissue, while simultaneously decreasing the expression of HMG-CoA protein. T9 was further demonstrated to possess antioxidant properties, as evidenced by an increase in SOD and a decrease in MDA, as well as anti-inflammatory effects, demonstrated by a decrease in TNF-α, IL-1β, and IL-6, thus confirming its potential as a hypolipidemia and hepatoprotective agent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ALT:

alanine aminotransferase

AST:

aspartate transaminase

CF:

clofibrate

13C NMR:

13C-nuclear magnetic resonance

DMAP:

4-Dimethylaminopyridine

DMF:

N,N-dimethylformamide

EDCI:

1-(3-dimethylaminopropyl) -3-ethylcarbodiimide

MS:

mass spectrometry

HDL-C:

high density lipoprotein cholesterol

HMG-CoA:

hydroxymethylglutaryl coenzyme A

1H NMR:

1H-nuclear magnetic resonance

IL-1β:

interleukin-1β

IL-6:

interleukin-6

LDL-C:

low density lipoprotein cholesterol

MDA:

malondialdehyde

PPAR-α:

peroxisome proliferator-activated receptor-α

SOD:

superoxide dismutase

TC:

total cholesterol

TG:

triglycerides

TNF-α:

tumor necrosis factor-α

References

  1. Samuel VT, Shulman GI. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Investig. 2016;126:12–22. https://doi.org/10.1172/JCI77812.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. Prim Care Clin Off Pract. 2013;40:195–211. https://doi.org/10.1016/j.pop.2012.11.003.

    Article  Google Scholar 

  3. Bozkurt B, Aguilar D, Deswal A, Dunbar SB, Francis GS, Horwich T, et al. contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: a scientific statement from the American Heart Association. Circulation. 2016;134:e535–e578. https://doi.org/10.1161/CIR.0000000000000450.

    Article  PubMed  Google Scholar 

  4. Georgia-Eirini D, Athina S, Wim BV, Christos K, Theodoros C. Natural products from mediterranean diet: from anti-hyperlipidemic agents to dietary epigenetic modulators. Curr Pharm Biotechnol. 2019;20:825–44. https://doi.org/10.2174/1573407215666190628150921.

    Article  CAS  PubMed  Google Scholar 

  5. Farnier M, Zeller M, Masson D, Cottin Y. Triglycerides and risk of atherosclerotic cardiovascular disease: an update. Arch Cardiovasc Dis. 2021;114:132–9. https://doi.org/10.1016/j.acvd.2020.11.006.

    Article  PubMed  Google Scholar 

  6. Toth PP, Shah PK, Lepor NE. Targeting hypertriglyceridemia to mitigate cardiovascular risk: a review. Am J Prev Cardiol. 2020;3:100086. https://doi.org/10.1016/j.ajpc.2020.100086.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wiesner P, Watson KE. Triglycerides: a reappraisal. Trends Cardiovasc Med. 2017;27:428–32. https://doi.org/10.1016/j.tcm.2017.03.004.

    Article  CAS  PubMed  Google Scholar 

  8. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35. https://doi.org/10.1016/S0140-6736(14)61177-6.

    Article  CAS  PubMed  Google Scholar 

  9. Bubb KJ, Nelson AJ, Nicholls SJ. Targeting triglycerides to lower residual cardiovascular risk. Expert Rev Cardiovasc Ther. 2022;20:185–91. https://doi.org/10.1080/14779072.2022.2058489.

    Article  CAS  PubMed  Google Scholar 

  10. Hassan RM, Aboutabl ME, Bozzi M, El-Behairy MF, El Kerdawy AM, Sampaolese B, et al. Discovery of 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids as novel PPARα agonists with anti-hyperlipidemic and antioxidant activities: Design, synthesis and in vitro/in vivo biological evaluation. Bioorganic Chemistry. 2021;115. https://doi.org/10.1016/j.bioorg.2021.105170.

  11. Hertz R, Bar-Tana J. Peroxisome proliferator-activated receptor (PPAR) alpha activation and its consequences in humans. Toxicol Lett. 1998;102–103:85–90. https://doi.org/10.1016/S0378-4274(98)00290-2.

    Article  PubMed  Google Scholar 

  12. Yamashita S, Rizzo M, Su TC, Masuda D. Novel selective PPARa Modulator Pemafibrate for Dyslipidemia, Nonalcoholic Fatty Liver Disease (NAFLD), and Atherosclerosis. Metabolites. 2023;13. https://doi.org/10.3390/metabo13050626.

  13. Hedrington MS, Davis SN. Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver. Expert Opin Drug Metab Toxicol. 2018;14:671–7. https://doi.org/10.1080/17425255.2018.1483337.

    Article  CAS  PubMed  Google Scholar 

  14. Xie Y-D, Xu Y-H, Liu J-P, Wang B, Shi Y-H, Wang W, et al. 1,3-Benzodioxole-based fibrate derivatives as potential hypolipidemic and hepatoprotective agents. Bioorg Med Chem Lett. 2021;43:127898. https://doi.org/10.1016/j.bmcl.2021.127898.

    Article  CAS  PubMed  Google Scholar 

  15. Sierra ML, Beneton V, Boullay A-B, Boyer T, Brewster AG, Donche F, et al. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARα agonists.: 1.: discovery of a novel series of potent HDLc raising agents. J Med Chem. 2007;50:685–95. https://doi.org/10.1021/jm058056x.

    Article  CAS  PubMed  Google Scholar 

  16. Mokale SN, Elgire RD, Sakle N, Shinde DB. Synthesis, hypolipidemic and hypoglycemic activity of some novel 2-(4-(2-substituted aminothiazole-4-yl) phenoxy)-2-methyl propanoic acid derivatives. Bioorg Med Chem Lett. 2011;21:682–5. https://doi.org/10.1016/j.bmcl.2010.12.011.

    Article  CAS  PubMed  Google Scholar 

  17. Sashidhara KV, Kumar M, Sonkar R, Singh BS, Khanna AK, Bhatia G. Indole-based fibrates as potential hypolipidemic and antiobesity agents. J Med Chem. 2012;55:2769–79. https://doi.org/10.1021/jm201697v.

    Article  CAS  PubMed  Google Scholar 

  18. Pawelczyk A, Sowa-Kasprzak K, Olender D, Zaprutko L. Molecular consortia-various structural and synthetic concepts for more effective therapeutics synthesis. Int J Mol Sci. 2018;19. https://doi.org/10.3390/ijms19041104.

  19. Davison EK, Brimble MA. Natural product derived privileged scaffolds in drug discovery. Curr Opin Chem Biol. 2019;52:1–8. https://doi.org/10.1016/j.cbpa.2018.12.07.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Li DC, Lin LF. Paeonol: pharmacological effects and mechanisms of action. Int Immunopharmacol. 2019;72:413–21. https://doi.org/10.1016/j.intimp.2019.04.033.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou A, Wu HF, Pan J, Wang XC, Li JM, Wu ZY, et al. Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Molecules. 2015;20:1304–18. https://doi.org/10.3390/molecules20011304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li L, Su XL, Bai TT, Qin W, Li AH, Liu YX, et al. New paeonol derivative C302 reduces hypertension in spontaneously hypertensive rats through endothelium-dependent and endothelium-independent vasodilation. European Journal of Pharmacology. 2022;927. https://doi.org/10.1016/j.ejphar.2022.175057.

  23. Ibrahim A, Shafie NH, Esa NM, Shafie SR, Bahari H, Abdullah MA. Mikania micrantha extract inhibits HMG-CoA reductase and ACAT2 and ameliorates hypercholesterolemia and lipid peroxidation in high cholesterol-fed rats. Nutrients. 2020;12:3077. https://doi.org/10.3390/nu12103077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furue K, Mitoma C, Tsuji G, Furue M. Protective role of peroxisome proliferator-activated receptor α agonists in skin barrier and inflammation. Immunobiology. 2018;223:327–30. https://doi.org/10.1016/j.imbio.2017.10.047.

    Article  CAS  PubMed  Google Scholar 

  25. Shen BY, Wang YL, Cheng JQ, Peng Y, Zhang QL, Li Z, et al. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine. 2023;109. https://doi.org/10.1016/j.phymed.2022.154561.

  26. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J Nutr Biochem. 2010;21:781–92. https://doi.org/10.1016/j.jnutbio.2009.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. Gallucci GM, Alsuwayt B, Auclair AM, Boyer JL, Assis DN, Ghonem NS. Fenofibrate downregulates NF-κB signaling to inhibit pro-inflammatory cytokine secretion in human THP-1 macrophages and during primary biliary cholangitis. Inflammation. 2022;45:2570–81. https://doi.org/10.1007/s10753-022-01713-1.

    Article  CAS  PubMed  Google Scholar 

  28. Westergaard M, Henningsen J, Johansen C, Rasmussen S, Svendsen ML, Jensen UB, et al. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor κB in normal and lesional psoriatic skin. J Investig Dermatol. 2003;121:1104–17. https://doi.org/10.1046/j.1523-1747.2003.12536.x.

    Article  CAS  PubMed  Google Scholar 

  29. Tian B, Zhang SW, Li QY, Sun CY, Wu YN, Yang HR, et al. Effect of the combination of cognitive behavioral therapy and oral paroxetine hydrochloride in patients with post-stroke depression. Trop J Pharm Res. 2022;21:1993–2000. https://doi.org/10.4314/tjpr.v21i9.25.

    Article  CAS  Google Scholar 

  30. Song KH, Lee SH, Kim BY, Park AY, Kim JY. Extracts of Scutellaria baicalensis reduced body weight and blood triglyceride in db/db mice. Phytother Res. 2013;27:244–50. https://doi.org/10.1002/ptr.4691.

    Article  PubMed  Google Scholar 

  31. Alvarez-Jimenez L, Moreno-Cabañas A, Ramirez-Jimenez M, Morales-Palomo F, Ortega JF, Mora-Rodriguez R. Effectiveness of statins vs. exercise on reducing postprandial hypertriglyceridemia in dyslipidemic population: a systematic review and network meta-analysis. J Sport Health Sci. 2022;11:567–77. https://doi.org/10.1016/j.jshs.2021.07.006.

    Article  PubMed  Google Scholar 

  32. Si SC, Hou L, Chen XL, Li WC, Liu XH, Liu CC, et al. Exploring the causal roles of circulating remnant lipid profile on cardiovascular and cerebrovascular diseases: mendelian randomization study. J Epidemiol. 2022;32:205–14. https://doi.org/10.2188/jea.JE20200305.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khan S, Chavez J, Zhu XW, Chiu NHL, Zhang WD, Yin ZY, et al. Carbon Nanodots Inhibit Oxidized Low Density Lipoprotein-Induced Injury and Monocyte Adhesion to Endothelial Cells Through Scavenging Reactive Oxygen Species. J Biomed Nanotechnol. 2021;17:1654–67. https://doi.org/10.1166/jbn.2021.3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang QB, Chen LM, Si ZH, Bu HR, Narasimhulu CA, Song XL, et al. Probucol protects endothelial progenitor cells against oxidized low-density lipoprotein via suppression of reactive oxygen species formation in vivo. Cell Physiol Biochem. 2016;39:89–101. https://doi.org/10.1159/000445608.

    Article  CAS  PubMed  Google Scholar 

  35. Ratheesh M, Svenia JP, Asha S, Sandya S, Girishkumar B, Krishnakumar IM. Anti-inflammatory effect of a novel formulation of coconut inflorescence sap against ox-LDL induced inflammatory responses in human peripheral blood mononuclear cells by modulating TLR-NF-κB signaling pathway. Toxicol Mech Methods. 2017;27:615–21. https://doi.org/10.1080/15376516.2017.1344339.

    Article  CAS  PubMed  Google Scholar 

  36. Saji S, Asha S, Svenia PJ, Ratheesh M, Sheethal S, Sandya S, et al. Curcumin-galactomannoside complex inhibits pathogenesis in Ox-LDL-challenged human peripheral blood mononuclear cells. Inflammopharmacology. 2018;26:1273–82. https://doi.org/10.1007/s10787-018-0474-0.

    Article  CAS  PubMed  Google Scholar 

  37. Hsu DZ, Chen KT, Chien SP, Li YH, Huang BM, Chuang YC, et al. Sesame oil attenuates acute iron-induced lipid peroxidation-associated hepatic damage in mice. Shock. 2006;26:625–30. https://doi.org/10.1097/01.shk.0000232274.88354.8d.

    Article  CAS  PubMed  Google Scholar 

  38. Chen YL, Zong CL, Guo YX, Tian L. Hydrogen-rich saline may be an effective and specific novel treatment for osteoradionecrosis of the jaw. Ther Clin Risk Manag. 2015;11:1581–5. https://doi.org/10.2147/TCRM.S90770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. El-Desoky AH, Abdel-Rahman RF, Ahmed OK, El-Beltagi HS, Hattori M. Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: in vitro and in vivo evidence. Phytomedicine. 2018;42:126–34. https://doi.org/10.1016/j.phymed.2018.03.051.

    Article  CAS  PubMed  Google Scholar 

  40. Debbache-Benaida N, Atmani-Kilani D, Schini-Keirth VB, Djebbli N, Atmani D. Pharmacological potential of Populus nigra extract as antioxidant, antiinflammatory, cardiovascular and hepatoprotective agent. Asian Pac J Trop Biomed. 2013;3:697–704. https://doi.org/10.1016/S2221-1691(13)60141-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thitimuta S, Pithayanukul P, Nithitanakool S, Bavovada R, Leanpolchareanchai J, Saparpakorn P Camellia sinensis L. Extract and its potential beneficial effects in antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities. Molecules. 2017;22. https://doi.org/10.3390/molecules22030401.

  42. Zhang L, Ren F, Zhang XY, Wang XX, Shi HB, Zhou L, et al. Peroxisome proliferator-activated receptor alpha acts as a mediator of endoplasmic reticulum stress-induced hepatocyte apoptosis in acute liver failure. Dis Models Mech. 2016;9:799–809. https://doi.org/10.1242/dmm.023242.

    Article  CAS  Google Scholar 

  43. Das M, Geetha V, Zarei M, Harohally NV, Kumar GS. Modulation of obesity associated metabolic dysfunction by novel lipophilic fraction obtained from Agaricus bisporus. Life Sci. 2022;305:120779. https://doi.org/10.1016/j.lfs.2022.120779.

    Article  CAS  PubMed  Google Scholar 

  44. Zarzecki MS, Araujo SM, Bortolotto VC, de Paula MT, Jesse CR, Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol Rep. 2014;1:200–8. https://doi.org/10.1016/j.toxrep.2014.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lei F, Zhang XN, Wang W, Xing DM, Xie WD, Su H, et al. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes. 2007;31:1023–9. https://doi.org/10.1038/sj.ijo.0803502.

    Article  CAS  Google Scholar 

  46. Zhuang SY, Wu ML, Wei PJ, Cao ZP, Xiao P, Li CH. Changes in plasma lipid levels and antioxidant activities in rats after supplementation of obtusifolin. Planta Med. 2016;82:539–43. https://doi.org/10.1055/s-0042-102458.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Shaanxi University of Traditional Chinese Medicine Student Innovation and Entrepreneurship Training Program Project (No. 202210716107). Sci-Tech Innovation Talent System Construction Program of Shaanxi University of Chinese Medicine (No. 2023-CXTD-05). Shaanxi Special Support Plan Talent Project. Shaanxi Provincial Administration of Traditional Chinese Medicine “Double Chain Integration” Young and middle-aged Scientific Research and Innovation Team Project (No. 2022-SLRH-YQ-008). Shaanxi Province key research and development plan project (No. 2024SF-YBXM-496).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlian Wei, Peifeng Wei or Yundong Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, L., Guo, Y., Wang, S. et al. Molecular hybridization method for obtaining paeonol-based fibrate derivatives with potent lipid-lowering and hepatoprotective activity. Med Chem Res 33, 796–810 (2024). https://doi.org/10.1007/s00044-024-03214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03214-2

Keywords

Navigation