Skip to main content
Log in

Naturally occurring and artificially designed antimicrobial peptides: a comparative study of Mastoparan C and BP52

  • Brief Report
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are naturally occurring molecules that play a vital role in the innate immune responses of various organisms. Additionally, artificial AMPs are also designed based on the common structure-activity relationships (SARs) found in natural ones. As part of our ongoing effort to explore the advantages of each source, this study focused on two representative helical AMPs: Mastoparan C (MPC) and BP52. While the former is derived from the venom of the European wasp Vespa crabro, the latter belongs to a group of artificially designed AMPs inspired by the structure of two natural peptides, Cecropin A and Melittin M. Our data suggests that BP52 exhibits similar antimicrobial activity to MPC but demonstrates significantly higher potency against the A427 cancer cells. Taken together with the shorter length and reduced toxicity to human red blood cells, BP52 exhibited greater potential in drug development compared to its counterpart MPC, thus highlighting the potential of rational design in developing short, potent and selective membrane-active peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

AMPs:

Antimicrobial peptides

HPLC:

High-performance liquid chromatography

hRBCs:

Humnan red blood cells

MPC:

Mastoparan C

SARs:

Structure-activity relationships

References

  1. Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: Application informed by evolution. Science. 2020;368:eaau5480. https://doi.org/10.1126/science.aau5480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT. Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. R Soc Open Sci. 2022;9:211583. https://doi.org/10.1098/rsos.211583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov. 2020;19:311–32. https://doi.org/10.1038/s41573-019-0058-8.

    Article  CAS  PubMed  Google Scholar 

  4. Luong HX, Thanh TT, Tran TH. Antimicrobial peptides – Advances in development of therapeutic applications. Life Sci. 2020;260:118407. https://doi.org/10.1016/j.lfs.2020.118407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li W, Tailhades J, O’Brien-Simpson NM, Separovic F, Otvos L, Hossain MA, et al. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 2014;46:2287–94. https://doi.org/10.1007/s00726-014-1820-1.

    Article  CAS  PubMed  Google Scholar 

  6. Li W, Separovic F, O’Brien-Simpson NM, Wade JD. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev. 2021;50:4932–73. https://doi.org/10.1039/D0CS01026J.

    Article  CAS  PubMed  Google Scholar 

  7. Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res. 2022;50:D488–D96. https://doi.org/10.1093/nar/gkab651.

    Article  CAS  PubMed  Google Scholar 

  8. Luong HX, Bui HTP, Tung TT. Application of the All-Hydrocarbon Stapling Technique in the Design of Membrane-Active Peptides. J Medicinal Chem. 2022;65:3026–45. https://doi.org/10.1021/acs.jmedchem.1c01744.

    Article  CAS  Google Scholar 

  9. Bui Thi Phuong H, Le Uyen C, Doan Ngan H, Luong Xuan H. Impact of chemical modifications on the antimicrobial and hemolytic activity of helical amphipathic peptide Lasioglossin LL-III. Amino Acids. 2023; https://doi.org/10.1007/s00726-023-03326-w.

  10. Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv. 2022;59:107962. https://doi.org/10.1016/j.biotechadv.2022.107962.

    Article  CAS  PubMed  Google Scholar 

  11. de Santana CJC, Pires Júnior OR, Fontes W, Palma MS, Castro MS. Mastoparans: A Group of Multifunctional α-Helical Peptides With Promising Therapeutic Properties. Front Mol Biosci. 2022;9. https://doi.org/10.3389/fmolb.2022.824989.

  12. Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, et al. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. Int J Biol Sci. 2018;14:599–607. https://doi.org/10.7150/ijbs.23419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu N, Zhong C, Liu T, Zhu Y, Gou S, Bao H, et al. Newly designed antimicrobial peptides with potent bioactivity and enhanced cell selectivity prevent and reverse rifampin resistance in Gram-negative bacteria. Eur J Pharm Sci. 2021;158:105665. https://doi.org/10.1016/j.ejps.2020.105665.

    Article  CAS  PubMed  Google Scholar 

  14. Badosa E, Ferre R, Planas M, Feliu L, Besalú E, Cabrefiga J, et al. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides. 2007;28:2276–85. https://doi.org/10.1016/j.peptides.2007.09.010.

    Article  CAS  PubMed  Google Scholar 

  15. Wade D, Andreu D, Mitchell S, Silveira A, Boman A, Boman H, et al. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int J Pept Protein Res. 1992;40:429–36.

    Article  CAS  PubMed  Google Scholar 

  16. Andreu D, Ubach J, Boman A, Wåhlin B, Wade D, Merrifield RB, et al. Shortened cecropin A-melittin hybrids Significant size reduction retains potent antibiotic activity. FEBS Lett. 1992;296:190–4. https://doi.org/10.1016/0014-5793(92)80377-S.

    Article  CAS  PubMed  Google Scholar 

  17. Gagnon M-C, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, et al. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Biochemistry. 2017;56:1680–95. https://doi.org/10.1021/acs.biochem.6b01071.

    Article  CAS  PubMed  Google Scholar 

  18. Killian JA, Salemink I, de Planque MRR, Lindblom G, Koeppe RE, Greathouse DV. Induction of Nonbilayer Structures in Diacylphosphatidylcholine Model Membranes by Transmembrane α-Helical Peptides: Importance of Hydrophobic Mismatch and Proposed Role of Tryptophans. Biochemistry. 1996;35:1037–45. https://doi.org/10.1021/bi9519258.

    Article  CAS  PubMed  Google Scholar 

  19. Persson S, Killian JA, Lindblom G. Molecular ordering of interfacially localized tryptophan analogs in ester-and ether-lipid bilayers studied by 2H-NMR. Biophys J. 1998;75:1365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yau W-M, Wimley WC, Gawrisch K, White SH. The Preference of Tryptophan for Membrane Interfaces. Biochemistry. 1998;37:14713–8. https://doi.org/10.1021/bi980809c.

    Article  CAS  PubMed  Google Scholar 

  21. Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochim Biophys Acta Biomembranes. 2006;1758:1184–202. https://doi.org/10.1016/j.bbamem.2006.04.006.

    Article  CAS  Google Scholar 

  22. Won H-S, Park S-H, Kim HE, Hyun B, Kim M, Lee BJ, et al. Effects of a tryptophanyl substitution on the structure and antimicrobial activity of C-terminally truncated gaegurin 4. Eur J Biochem. 2002;269:4367–74. https://doi.org/10.1046/j.1432-1033.2002.03139.x.

    Article  CAS  PubMed  Google Scholar 

  23. Dinh TTT, Kim D-H, Luong HX, Lee B-J, Kim Y-W. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Bioorg Med Chem Lett. 2015;25:4016–9. https://doi.org/10.1016/j.bmcl.2015.06.053.

    Article  CAS  PubMed  Google Scholar 

  24. Luong HX, Kim D-H, Mai NT, Lee B-J, Kim Y-W. Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Arch Pharmacal Res. 2017;40:713–9. https://doi.org/10.1007/s12272-017-0922-1.

    Article  CAS  Google Scholar 

  25. Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics. 2008;24:2101–2. https://doi.org/10.1093/bioinformatics/btn392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is funded by The PHENIKAA University Foundation for Science and Technology Development, Grant number 2-01.2020.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huy Luong Xuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui Thi Phuong, H., Do Hai, Y., Nguyen Huu, V. et al. Naturally occurring and artificially designed antimicrobial peptides: a comparative study of Mastoparan C and BP52. Med Chem Res (2024). https://doi.org/10.1007/s00044-024-03205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00044-024-03205-3

Keywords

Navigation