Skip to main content

Advertisement

Log in

Indazole derivatives as selective inhibitors of butyrylcholinesterase with effective blood-brain-barrier permeability profile

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a chronic disease that is multifactorial. Its underlying cause and mechanisms are yet to be fully understood and numerous research are underway to develop more effective drug candidates. This research explores the synthesis of an indazole-containing novel drug targeting AD, particularly by inhibiting cholinesterase activity. Among the 17 indazole derivatives synthesized in this study, compound 4q was demonstrated to have potent and selective butyrylcholinesterase (BChE) inhibitory activity. Molecular docking simulations revealed that the binding of 4q with BChE was through hydrophobic and polar interactions. It was also found to easily permeate through the blood-brain-barrier via an in vitro model and is non-toxic when tested against SH-SY5Y cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056. https://doi.org/10.1038/nrdp.2015.56.

    Article  PubMed  Google Scholar 

  2. Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. https://doi.org/10.1038/s41572-021-00269-y.

    Article  PubMed  PubMed Central  Google Scholar 

  3. National Institute on Aging (NIA). (2017) What happens to the brain in Alzheimer’s disease? 2017. https://www.nia.nih.gov/health/what-happens-brain-alzheimers-disease.

  4. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14:32. https://doi.org/10.1186/s13024-019-0333-5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27:1816. https://doi.org/10.3390/MOLECULES27061816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Puangmalai N, Thangnipon W, Soi-Ampornkul R, Suwanna N, Tuchinda P, Nobsathian S. Neuroprotection of N-benzylcinnamide on scopolamine-induced cholinergic dysfunction in human SH-SY5Y neuroblastoma cells. Neural Regen Res. 2017;12:1492–8. https://doi.org/10.4103/1673-5374.215262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson KJ, Tobin AB. Crosstalk between the M1 muscarinic acetylcholine receptor and the endocannabinoid system: a relevance for Alzheimer’s disease? Cell Signal. 2020;70:109545. https://doi.org/10.1016/J.CELLSIG.2020.109545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bekdash RA, Matsukawa N. The cholinergic system, the adrenergic system and the neuropathology of Alzheimer’s disease. Int J Mol Sci. 2021;22:1273. https://doi.org/10.3390/ijms22031273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Padda IS, Parmar M. Aducanumab—NCBI Bookshelf. StatPearls, Treasure Island (FL); 2023. https://www.ncbi.nlm.nih.gov/books/NBK573062/.

  10. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21. https://doi.org/10.1056/NEJMoa2212948.

    Article  PubMed  Google Scholar 

  11. Ha ZY, Mathew S, Yeong KY. Butyrylcholinesterase: a multifaceted pharmacological target and tool. Curr Protein Pept Sci. 2020;21:99–109. https://doi.org/10.2174/1389203720666191107094949.

    Article  CAS  PubMed  Google Scholar 

  12. Chatonnet A, Lockridge O. Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem J. 1989;260:625–34. https://doi.org/10.1042/bj2600625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shaji KS, Smitha K, Praveen Lal K, Prince MJ. Caregivers of people with Alzheimer’s disease: a qualitative study from the Indian 10/66 Dementia Research Network. Int J Geriatr Psychiatry. 2003;18:1–6. https://doi.org/10.1002/gps.649.

    Article  CAS  PubMed  Google Scholar 

  14. Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, et al. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci USA. 2005;102:17213–8. https://doi.org/10.1073/pnas.0508575102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou S, Huang G. The biological activities of butyrylcholinesterase inhibitors. Biomed Pharmacother. 2022;146:112556. https://doi.org/10.1016/j.biopha.2021.112556.

    Article  CAS  PubMed  Google Scholar 

  16. Mesulam MM, Geula C. Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol. 1994;36:722–7. https://doi.org/10.1002/ana.410360506.

    Article  CAS  PubMed  Google Scholar 

  17. Diamant S, Podoly E, Friedler A, Ligumsky H, Livnah O, Soreq H. Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proc Natl Acad Sci. 2006;103:8628–33. https://doi.org/10.1073/pnas.0602922103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li S, Li AJ, Travers J, Xu T, Sakamuru S, Klumpp-Thomas C, et al. Identification of compounds for butyrylcholinesterase inhibition. SLAS Discov. 2021;26:1355–64. https://doi.org/10.1177/24725552211030897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ha ZY, Ong HC, Oo CW, Yeong KY. Synthesis, molecular docking, and biological evaluation of benzimidazole derivatives as selective butyrylcholinesterase inhibitors. Curr Alzheimer Res. 2020;17:1177–85. https://doi.org/10.2174/1567205018666210218151228.

    Article  CAS  PubMed  Google Scholar 

  20. Yoon YK, Ali MA, Wei AC, Choon TS, Khaw KY, Murugaiyah V, et al. Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorg Chem. 2013;49:33–9. https://doi.org/10.1016/j.bioorg.2013.06.008.

    Article  CAS  PubMed  Google Scholar 

  21. González-Naranjo P, Pérez C, González-Sánchez M, Gironda-Martínez A, Ulzurrun E, Bartolomé F, et al. Multitarget drugs as potential therapeutic agents for alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J Enzyme Inhib Med Chem. 2022;37:2348–56. https://doi.org/10.1080/14756366.2022.2117315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren Y, Wang Y, Li G, Zhang Z, Ma L, Cheng B, et al. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J Med Chem. 2021;64:4498–515. https://doi.org/10.1021/acs.jmedchem.0c01837.

    Article  CAS  PubMed  Google Scholar 

  23. Solano LN, Nelson GL, Ronayne CT, Jonnalagadda S, Jonnalagadda SK, Kottke K, et al. Synthesis, in vitro, and in vivo evaluation of novel N-phenylindazolyl diarylureas as potential anti-cancer agents. Sci Rep. 2020;10:17969. https://doi.org/10.1038/s41598-020-74572-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee J, Kim J, Hong VS, Park JW. Synthesis and anti-proliferative activity evaluation of N3-acyl-N5-aryl-3,5-diaminoindazole analogues as anti-head and neck cancer agent. DARU J Pharm Sci. 2014;22:1–9. https://doi.org/10.1186/2008-2231-22-4.

    Article  CAS  Google Scholar 

  25. Antonysamy S, Hirst G, Park F, Sprengeler P, Stappenbeck F, Steensma R, et al. Fragment-based discovery of JAK-2 inhibitors. Bioorg Med Chem Lett. 2009;19:279–82. https://doi.org/10.1016/j.bmcl.2008.08.064.

    Article  CAS  PubMed  Google Scholar 

  26. Darvesh S, Hopkins DA. Differential distribution of butyrylcholinesterase and acetylcholinesterase in the human thalamus. J Comp Neurol. 2003;463:25–43. https://doi.org/10.1002/cne.10751.

    Article  CAS  PubMed  Google Scholar 

  27. Tasker A, Perry EK, Ballard CG. Butyrylcholinesterase: impact on symptoms and progression of cognitive impairment. Expert Rev Neurother. 2005;5:101–6. https://doi.org/10.1586/14737175.5.1.101.

    Article  CAS  PubMed  Google Scholar 

  28. Guillozet AL, Smiley JF, Mash DC, Mesulam MM. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol. 1997;42:909–18. https://doi.org/10.1002/ana.410420613.

    Article  CAS  PubMed  Google Scholar 

  29. Changiz G, Marsel MM. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis Assoc Disord. 1995;9:23–8.

    Article  Google Scholar 

  30. Li B, Duysen EG, Lockridge O. The butyrylcholinesterase knockout mouse is obese on a high-fat diet. Chem Biol Interact. 2008;175:88–91. https://doi.org/10.1016/j.cbi.2008.03.009.

    Article  CAS  PubMed  Google Scholar 

  31. Acar Cevik U, Saglik B, Levent S, Osmaniye D, Kaya Cavuşoglu B, Ozkay Y, et al. Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules. 2019;24:861. https://doi.org/10.3390/molecules24050861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vyas S, Beck JM, Xia S, Zhang J, Hadad CM. Butyrylcholinesterase and G116H, G116S, G117H, G117N, E197Q and G117H/E197Q mutants: a molecular dynamics study. Chem Biol Interact. 2010;187:241–5. https://doi.org/10.1016/j.cbi.2010.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc. 2002;124:10572–7. https://doi.org/10.1021/ja020243m.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda T, Ueda K, Ishiyama T, Goto R, Muramatsu S, Hashimoto M, et al. Synthesis and SAR studies of 3,6-disubstituted indazole derivatives as potent hepcidin production inhibitors. Bioorg Med Chem Lett. 2017;27:2148–52. https://doi.org/10.1016/J.BMCL.2017.03.056.

    Article  CAS  PubMed  Google Scholar 

  35. Corning Incorporated. Corning Gentest PAMPA Plate System. 2013. https://www.corning.com/catalog/cls/documents/product-information-sheets/CLS-DL-GT-023_REV1_DL.pdf.

  36. Kryger G, Silman I, Sussman JL. Structure of acetylcholinesterase complexed with E2020 (Ariceptρ): implications for the design of new anti-Alzheimer drugs. Structure. 1999;7:297–307. https://doi.org/10.1016/S0969-2126(99)80040-9.

    Article  CAS  PubMed  Google Scholar 

  37. Košak U, Strašek N, Knez D, Jukič M, Žakelj S, Zahirović A, et al. N-alkylpiperidine carbamates as potential anti-Alzheimer’s agents. Eur J Med Chem. 2020;197:112282. https://doi.org/10.1016/j.ejmech.2020.112282.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the School of Science, Monash University Malaysia and Nanotechnology and Catalysis Research Centre, Universiti Malaya for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chin Fei Chee or Keng Yoon Yeong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobuse, A.J., Law, C.S.W., Thy, C.K. et al. Indazole derivatives as selective inhibitors of butyrylcholinesterase with effective blood-brain-barrier permeability profile. Med Chem Res 33, 298–307 (2024). https://doi.org/10.1007/s00044-023-03179-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03179-8

Keywords

Navigation