Skip to main content
Log in

Design, synthesis, molecular docking, and biological activity of pyrazolo[3,4-b]pyridines as promising lead candidates against Mycobacterium tuberculosis

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Pyrazolo[3,4-b]pyridine is a medicinally privileged structure. We have achieved a new and facile synthesis of a combinatorial library of its tetra- and persubstituted derivatives by trifluoracetic acid catalyzed condensation of a group of 5-aminopyrazoles and a group of α-oxoketene dithioacetals. Furthermore, we demonstrated structural modification of the products via reductive desulfurization, hydrolysis of the ester, and Suzuki coupling of the bromo derivative with aryl boronic acids. Some products were subjected to in vitro Microplate Alamar Blue assay (MABA) assay against M. tuberculosis H37Rv strain and in silico analysis by binding to Pantothenate Synthetase from M. tuberculosis (MTBPS). The results indicated that the pyazolo[3,4-b]pyridine with N(1)CH3, C(3)C6H5, C(4) pCH3C6H5, C(5)CO2Et, C(6)SMe substitutions exhibits promising antituberculotic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Fig. 4
Scheme 6
Scheme 7
Scheme 8
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data related to this study are available from the corresponding author upon request.

References

  1. Matthew WE, Snyder SA, Stockwel BR. Privileged scaffolds for library design and drug discovery. Curr Opin Chem Biol. 2010a;14:347–61.

    Article  Google Scholar 

  2. Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Product Rep. 2000b;17:215–34.

    Article  CAS  Google Scholar 

  3. Chaudhuri R, Prasanth T, Dash J. Expanding the toolbox of target directed bio-orthogonal synthesis: in situ direct macrocyclization by DNA templates. Angew Chem Int Ed Engl. 2023c;62:e202215245. https://doi.org/10.1002/anie.202215245.

    Article  CAS  PubMed  Google Scholar 

  4. Panda D, Saha P, Chaudhuri R, Prasanth T, Ravichandiran V, Dash J. A competitive pull-down assay using G-quadruplex DNA linked magnetic nanoparticles to determine specificity of G-quadruplex ligands. Anal Chem. 2019d;91:7705–11.

    Article  CAS  PubMed  Google Scholar 

  5. Edon V, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals.J Med Chem. 2014a;57:10257–74.

    Article  Google Scholar 

  6. Likhosherstov AM, Filippova OV, Peresada VP, Kryzhanovskii SA, Vititnova MB, Kaverina NV, et al. Azacycloalkanes. XXXIV. Synthesis and antiarrhythmic activity of 2-(2′-R-2′-hydroxyethyl)-1, 2, 3, 4-tetra-hydro-pyrrolo-[1,2-a]pyrazines. Pharm Chem J. 2003b;37:6–9.

    Article  CAS  Google Scholar 

  7. Kumar V, Kaur K, Gupta GK, Sharma AK. Pyrazole containing natural products: synthetic preview and biological significance. Eur J Med Chem. 2013a;69:735–53.

    Article  CAS  PubMed  Google Scholar 

  8. Katritzky AR, Rees CW. Comprehensive heterocyclic chemistry. Pergamon Press; 1984b.

  9. Hardy CR. The chemistry of pyrazolopyridines in advances in heterocyclic chemistry. Academic Press; 1984. p. 343–409.

    Google Scholar 

  10. Castillo JC, Portilla J. Recent advances in the synthesis of new pyrazole derivatives. Targets Heterocycl Syst. 2018b;22:194–23.

    CAS  Google Scholar 

  11. Dodiya KD, Trivedi RA, Kataria BV, Shah HV. Advances in the synthesis of pyrazolo[3,4-b] pyridines. Curr Org Chem. 2012;16:400–17. Review

    Article  CAS  Google Scholar 

  12. Patel JB, Malick JB, Salama AI, Goldberg ME. Pharmacology of pyrazolopyridines. Pharmacol Biochem Behav. 1985;23:675–80. Review

    Article  CAS  PubMed  Google Scholar 

  13. Davies LP, Brown DJ, Chow SC, Johnston GA. Pyrazolo[3,4-d]pyrimidines, a new class of adenosine antagonists. Neurosci Lett. 1983;41:189–93. Review

    Article  CAS  PubMed  Google Scholar 

  14. Zheleznova NN, Sedelnikova A, Weiss DS. Function and modulation of δ-containing GABAA receptors. Psychoneuroendocrinology.2009;34:S67–73.

    Article  CAS  PubMed  Google Scholar 

  15. Höhn H, Polacek I, Schulze E. Potential antidiabetic agents. Pyrazolo[3,4-b]pyridines. J Med Chem. 1973;16:1340–6.

    Article  PubMed  Google Scholar 

  16. Pitre T, Su J, Cui S, Scanlan R, Chiang C, Husnudinov R, et al. Medications for the treatment of pulmonary arterial hypertension: a systematic review and network meta-analysis. Eur Respir Rev. 2022;31:220036. https://doi.org/10.1183/16000617.0036-2022.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Evgenov OV, Pacher P, Schmidt PM, Haskó G, Schmidt HH, Stasch JP. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov. 2006;5:755–68. b Review

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Satya P, Gupta M, Gupta R, Loupy A. Microwave-assisted solvent-free synthesis of pyrazolo[3,4-b]quinolines and pyrazolo[3,4-c]pyrazoles using p-TsOH. Tetrahedron Lett. 2001a;42:3827–9.

    Article  Google Scholar 

  19. Hao Y, Xu XP, Chen T, Zhao LL, Ji SJ. Multicomponent approaches to 8-carboxylnaphthyl-functionalized pyrazolo[3,4-b]pyridine derivatives. Org Biomol Chem. 2012b;10:724–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shi DQ, Yao H, Shi JW. Three component, one pot synthesis of pyrazolo[3,4-b]pyridine derivatives in aqueous media. Synth Commun. 2008;38:1662–9.

    Article  CAS  Google Scholar 

  21. Barreiro EJ, Camara, Celso A, Verli H, Brazil-Ma L, Castro NG, et al. Design, synthesis, and pharmacological profile of novel fused pyrazolo[4,3-d]pyridine and pyrazolo[3,4-b][1,8]naphthyridine isosteres: a new class of potent and selective acetylcholinesterase inhibitors. J Med Chem. 2003b;46:1144–52.

    Article  CAS  PubMed  Google Scholar 

  22. Ahmad S, Seyyedhamzeh M, Maleki A, Behnam M, Rezazadeh F. Synthesis of fully substituted pyrazolo [3,4-b]pyridine-5-carboxamide derivatives via a one-pot four-component reaction. Tetrahedron Lett. 2009;50:2911–3.

    Article  Google Scholar 

  23. Kalsi JS, Rees RW, Hobbs AJ, Royle M, Kell PD, Ralph DJ, et al. BAY41-2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J Urol. 2003;169:761–6.

    Article  CAS  PubMed  Google Scholar 

  24. Fabrizio M, Schenone S, Bondavalli F, Brullo C, Bruno O, Ranise A, et al. Synthesis and 3D QSAR of new pyrazolo[3,4-b]pyridines: potent and selective inhibitors of A1 adenosine receptors. J Med Chem. 2005a;48:7172–85.

    Article  Google Scholar 

  25. Silvia S, Bruno O, Fossa P, Ranise A, Menozzi G, Mosti L, et al. Synthesis and biological data of 4-amino-1-(2-chloro-2-phenylethyl)-1H-pyrazolo[3,4-b] pyridine-5-carboxylic acid ethyl esters, a new series of A 1-adenosine receptor (A1 AR) ligands. Bioorg Med Chem Lett. 2001b;11:2529–31.

    Article  Google Scholar 

  26. Nicole HJ, Angell T, Ballantine SP, Cook CM, Cooper AW, Dawson J, et al. Pyrazolopyridines as a novel structural class of potent and selective PDE4 inhibitors. Bioorg Med Chem Lett. 2008;18:4237–41.

    Article  Google Scholar 

  27. Jason W, Bordas V, Gaiba A, Garton NS, Naylor A, Rawlings AD, et al. 6-Aryl-pyrazolo[3,4-b] pyridines: potent inhibitors of glycogen synthase kinase-3 (GSK-3). Bioorg Med Chem Lett. 2003a;13:3055–7.

    Article  Google Scholar 

  28. Mourad C, Samadi A, Soriano E, Lozach O, Meijer L, Marco-Contelles J. Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorg Med Chem Lett. 2009b;16:4566–9.

    Google Scholar 

  29. Laszlo R, Blum E, Padova FE, Buhl T, Feifel R, Gram H, et al. Pyrazoloheteroaryls novel p38α MAP kinase inhibiting scaffolds with oral activity. Bioorg Med Chem Lett. 2006;16:262–6.

  30. Maqbool M, Rajvansh R, Srividya K, Hoda N. Deciphering the robustness of pyrazolo-pyridine carboxylate core structure-based compounds for inhibiting Α-synuclein in transgenic C. elegans model of synucleinopathy. Bioorg Med Chem. 2020;28:17–115640.

    Article  Google Scholar 

  31. Li C, Zhang F, Shen Z. An Efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron. 2020;76:131727.

    Article  CAS  Google Scholar 

  32. Zhang F, Li C, Qi C. A one-pot three-component strategy for highly diastereoselective synthesis of spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives using recyclable solid acid as a catalyst. Org Chem Front. 2020;7:2456–66. (c)

    Article  CAS  Google Scholar 

  33. Ji Y, Li L, Zhu G, Zhou Y, Lu X, He W, et al. Efficient reactions for the synthesis of pyrazolo[3,4-b]pyridine and pyrano[2, 3-c]pyrazole derivatives from N-methyl-1-(methylthio)-2-nitroethen-1-amine. J. Heterocycl. Chem. 2020;57:1781–96.

  34. Nafie M, A AM, M AK. Discovery of novel pyrazolo[3,4-b]pyridine scaffold-based derivatives as potential PIM-1 kinase inhibitors in breast cancer MCF-7 cells. Bioorg Med Chem. 2020;28:115828.

    Article  CAS  PubMed  Google Scholar 

  35. Jia Q, Zhuo C, X L, Q L, G H, Li Q. Discovery of novel pyrazolo[3,4-b]pyridine derivatives with dual activities of vascular remodelling inhibition and vasodilatation for the treatment of pulmonary arterial hypertension. J Med Chem. 2020;63:11215–34.

    Article  Google Scholar 

  36. Marcade M, Bourdin J, Loiseau N, Peillon H, Rayer A, Drouin D, et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem. 2008;106:392–404. https://doi.org/10.1111/j.1471-4159.2008.05396.x.

    Article  CAS  PubMed  Google Scholar 

  37. Leeb-Lundberg F, Snowman A, Olsen RW. Perturbation of benzodiazepine receptor binding by pyrazolopyridines involves picrotoxinin/barbiturate receptor sites. J Neurosci. 1981;1:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar SV, Muthusubramanian S, Perumal S. Recent progress in the synthesis of pyrazolopyridines and their derivatives.Org Prep Proced Int. 2019;51:1–89.

    Article  Google Scholar 

  39. Bare TM, McLaren CD, Campbell JB, Firor JW, Resch JF, Walters CP, et al. Synthesis and structure-activity relationships of a series of anxioselectivepyrazolopyridine ester and amide anxiolytic agents. J Med Chem. 1989;32:2561–73.

    Article  CAS  PubMed  Google Scholar 

  40. Wang HY, Shi DQ. Three-component one-pot synthesis of pyrazolo[3,4-b]quinolin-5 (6H)-one derivative in aqueous media. J Heterocycl Chem. 2012;49:212–6.

    Article  CAS  Google Scholar 

  41. Rao HSP, Adigopula LN, Ramadas K. One-pot synthesis of densely substituted pyrazolo[3,4-b]-4,7-dihydropyridines. ACS Comb Sci. 2017;19:279–85.

    Article  CAS  PubMed  Google Scholar 

  42. Review MA, Metwally E. Abdel-latif Versatile α-oxoketene dithioacetals and analogs in heterocycle synthesis. J Sulfur Chem. 2004;25:359–79.

    Article  Google Scholar 

  43. Yokoyama M, Togo H, Kondo S. Synthesis of heterocycles from ketene dithioacetals. Sulfur Rep. 1990;10:23–47.

    Article  CAS  Google Scholar 

  44. Rao HSP, Sivakumar S. Condensation of α-aroylketene dithioacetals 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins. J. Org. Chem. 2006;71:8715–23.

    Article  CAS  PubMed  Google Scholar 

  45. Rao HSP, Sivakumar S. Aroylketene dithioacetal chemistry: Facile synthesis of 4-aroyl-3-methylsulfanyl-2-tosylpyrroles from aroylketene dithioacetals and TosMIC. Beilstein J. Org. Chem. 2007;3:31–5.

    PubMed  Google Scholar 

  46. Patrick M, Thuillier A. Sulfur reagents in organic synthesis. Elsevier; 2013.

  47. Chryssostomos C, Dieter KA. Sulfur-centered reactive intermediates in chemistry and biology. Springer Science & Business Media; 2013.

  48. Dieter RK. Tetrahedron: Elsevier Publishers 1986. 42, 3029.

  49. Junjappa H, Ila H, Ashokan CV. α-Oxoketene-S, S-, N, S- and N, N-acetals: versatile intermediates in organic synthesis. Tetrahedron. 1990;46:5423–5506.

  50. Liu Q, Yang Z. Progress on the chemistry of alpha-oxo ketene dithioacetals. J Chin J Org Chem. 1992;12:225–32.

    CAS  Google Scholar 

  51. Crofton J, Horne N and Miller F, 2009. Crofton’s Clinical Tuberculosis. Design (a). http://www.tbrieder.org/publications/books_english/crofton_clinical.pdf.

  52. Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol 2018;26:555–6. https://doi.org/10.1016/j.tim.2018.02.012.

    Article  CAS  PubMed  Google Scholar 

  53. Marrakchi H, Lanéelle MA, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol. 2014;21:67–85.

    Article  CAS  PubMed  Google Scholar 

  54. Devi PB, Jogula S, Reddy AP, Saxena S, Sridevi JP, Sriram D, et al. Design of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors: virtual screening, synthesis and in vitro biological activities. Mol Inform. 2015;34:147–59.

    Article  CAS  PubMed  Google Scholar 

  55. Yang Y, Gao P, Liu Y, Ji X, Gan M, Guan Y, et al. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition. Bioorg Med Chem Lett. 2011;21:3943–6.

    Article  CAS  PubMed  Google Scholar 

  56. Trivedi A, Vaghasiya S, Dholariya B, Dodiya D, Shah V. Synthesis and antimycobacterial evaluation of various 6-substituted pyrazolo[3,4-d]pyrimidine derivatives. J Enzyme Inhib Med Chem. 2010;25:893–9.

    Article  CAS  PubMed  Google Scholar 

  57. Trivedi AR, Dholariya BH, Vakhariya CP, et al. Synthesis and anti-tubercular evaluation of some novel pyrazolo[3,4-d]pyrimidine derivatives. Med Chem Res. 2012;21:1887–91.

    Article  CAS  Google Scholar 

  58. Singh SP, Naithani R, Aggarwal R, Prakash O. Synthesis of some novel fluorinated pyrazolo[3,4-b] pyridines. Synth Commun. 2004;34:4359–67.

    Article  CAS  Google Scholar 

  59. Williams R. pKa Data Compiled by R. Williams. Available online: https://organicchemistrydata.org/hansreich/resources/pka/pka_data/pka-compilation-williams.pdf. Accessed 15 Aug 2021.

  60. Groom CR, Bruno IJ, Lightfoot MP, Ward SC. The cambridge structural database. Acta Cryst. 2016;72:171–9. https://doi.org/10.1107/S2052520616003954.

    Article  CAS  Google Scholar 

  61. Kim DK, Gam J, Kim YW, Lim J, Kim HT, Kim K. H.Synthesis and anti-HIV-1 activity of a series of 1-alkoxy-5-alkyl-6-(arylthio) uracils. J.Med. Chem. 1997;40:2363–73.

    Article  PubMed  Google Scholar 

  62. Rentner J, Kljajic M, Offner L, Breinbauer R. Recent advances and applications of reductive desulfurization in organic synthesis. Tetrahedron. 2014;70:8983–9027.

    Article  CAS  Google Scholar 

  63. Griffin PJ, Fava MA, Whittaker SJT, Kolonko KJ, Catino AJ. Synthesis ofTetraarylmethanes via a Friedel-Crafts Cyclization/DesulfurizationSstrategy. Tetrahedron Lett. 2018;59:3999–4002.

    Article  CAS  Google Scholar 

  64. Hu L, Ren Q, Deng L, Zhou Z, Cai Z, Wang B and Li Z. An example for use of LiOH for ester hydrolysis, E. J. Med. Chem. 2020;113106.

  65. Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Sekhar KVGC. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis–a medicinal chemist perspective. RSC Adv. 2020;10:37098–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Riddick JA, Bunger WB. Organic solvents: physical properties and methods of purification; techniques of chemistry, Vol II. New York: Wiley-Interscience; 1970a.

    Google Scholar 

  67. Coetzee JF. Purification of solvents. Oxford: Pergamon Press; 1982b.

    Google Scholar 

Download references

Acknowledgements

We thank Professor D. Sriram. Ph.D. Senior Professor, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad- 500 078. (Email: dsriram@hyderabad.bits-pilani.ac.in) for conducting anti-tuberculosis studies. We thank DST-FIST, UGC SAP DRS-2, and CIF, PU for facilities and spectral recordings. RG thanks CSIR for SRF and UGC-PU for JRF. JM thanks Sharda University, Greater Noida for support.

Author information

Authors and Affiliations

Authors

Contributions

HSPR supervised the findings of this work and conceived the studies. He was involved in planning and supervised the work. RG and LNA were involved the synthesis. JM performed the in silico studies. HSPR aided in interpreting the results obtained from synthesis, in silico and in vitro studies. HSPR, RG, LNA, and JM prepared the first draft of the manuscript. HSPR and JM revised the manuscript into its final version, to which all the authors gave approval.

Corresponding author

Correspondence to H. Surya Prakash Rao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, H.S.P., Gunasundari, R., Adigopula, L.N. et al. Design, synthesis, molecular docking, and biological activity of pyrazolo[3,4-b]pyridines as promising lead candidates against Mycobacterium tuberculosis. Med Chem Res 33, 177–200 (2024). https://doi.org/10.1007/s00044-023-03173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03173-0

Keywords

Navigation