Skip to main content
Log in

FTase inhibitors and cancer: prospects for use in targeted therapies

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Farnesyltransferase (FTase) is a key enzyme that catalyzes the farnesylation of Ras protein. It is used to bind RAS protein to plasma membrane to complete signal transduction. Ras has been shown to be closely related to the development of many cancers. In recent years, FTase has been studied more deeply as an anticancer target. And more and more novel FTase inhibitors have been reported for the treatment of pancreatic cancer, lung cancer, colon cancer, HGPS, PL and so on. This review summarizes the structural features and biological activities of various novel FTase inhibitors reported since 2013. The reported novel FTase inhibitors were reclassified from the perspective of structure, their current tumor antagonism potential was summarized, and their current challenges and future development trends were further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gibbs JB, Oliff A. Pharmaceutical research in molecular oncology. Cell. 1994;79:193–8.

    Article  CAS  PubMed  Google Scholar 

  2. Wang JJ, Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments. Eur Rev Med Pharm Sci. 2018;22:3855–64.

    Google Scholar 

  3. Moodie SA, Wolfman A. The 3Rs of life: Ras, Raf and growth regulation. Trends Genet. 1994;10:44–48.

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Li F, Xu D, et al. The Function of RAS Mutation in Cancer and Advances in its Drug Research. Curr Pharm Des. 2019;25:1105–14.

    Article  CAS  PubMed  Google Scholar 

  5. Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3:11–22.

    Article  CAS  PubMed  Google Scholar 

  6. Dai W, Xie S, Chen C, et al. Ras sumoylation in cell signaling and transformation. Semin Cancer Biol. 2021;76:301–9.

    Article  CAS  PubMed  Google Scholar 

  7. Dunnett-Kane V, Nicola P, Blackhall F, et al. Mechanisms of Resistance to KRASG12C Inhibitors. Cancers. 2021;13:151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129:1287–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rowinsky EK, Windle JJ, Von Hoff DD. Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol. 1999;17:3631–52.

    Article  CAS  PubMed  Google Scholar 

  10. Sebti SM. Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell. 2005;7:297–300.

    Article  CAS  PubMed  Google Scholar 

  11. Basso AD, Kirschmeier P, Bishop WR. Lipid posttranslational modifications. Farnesyl transferase inhibitors. J Lipid Res. 2006;47:15–31.

    Article  CAS  PubMed  Google Scholar 

  12. Lobell RB. Prenylation of Ras GTPase superfamily proteins and their function in immunobiology. Adv Immunol. 1998;68:145–89.

    Article  CAS  PubMed  Google Scholar 

  13. Silva LR, da Silva-Júnior EF. Inhibiting the “Undruggable” RAS/Farnesyltransferase (FTase) Cancer Target by Manumycin-related Natural Products. Curr Med Chem. 2022;29:189–11.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q, Chen F, Liu P, et al. Scaffold-based analysis of nonpeptide oncogenic FTase inhibitors using multiple similarity matching, binding affinity scoring and enzyme inhibition assay. J Mol Graph Model. 2021;105:107898.

    Article  CAS  PubMed  Google Scholar 

  15. Jones HA, Hahn SM, Bernhard E, et al. Ras inhibitors and radiation therapy. Semin Radiat Oncol. 2001;11:328–37.

    Article  CAS  PubMed  Google Scholar 

  16. Nam NH, Parang K. Current targets for anticancer drug discovery. Curr Drug Targets. 2003;4:159–79.

    Article  CAS  PubMed  Google Scholar 

  17. Dhillon S. Lonafarnib: First Approval [published correction appears in Drugs. 2021 Apr;81(5):619]. Drugs. 2021;81:283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohl NE. Farnesyltransferase inhibitors. Preclinical development. Ann NY Acad Sci. 1999;886:91–102.

    Article  CAS  PubMed  Google Scholar 

  19. Wang J, Yao X, Huang J. New tricks for human farnesyltransferase inhibitor: cancer and beyond. Medchemcomm. 2017;8:841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cho KN, Lee KI. Chemistry and biology of Ras farnesyltransferase. Arch Pharm Res. 2002;25:759–69.

    Article  CAS  PubMed  Google Scholar 

  21. Morgillo F, Lee HY. Lonafarnib in cancer therapy. Expert Opin Investig Drugs. 2006;15:709–19.

    Article  CAS  PubMed  Google Scholar 

  22. Mullard A. The FDA approves a first farnesyltransferase inhibitor. Nat Rev Drug Discov. 2021;20:8.

    Article  PubMed  Google Scholar 

  23. George Njoroge F, Taveras AG, Kelly J, et al. -4-[2-[4-(8-Chloro-3,10-dibromo-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]- pyridin-11(R)-yl)-1-piperidinyl]-2-oxo-ethyl]-1-piperidinecarboxamide (SCH-66336): A Very Potent Farnesyl Protein Transferase Inhibitor as a Novel Antitumor Agent. J Med Chem. 1998;41:4890–4902.

    Article  Google Scholar 

  24. Suzuki M, Jeng LJB, Chefo S, et al. FDA approval summary for lonafarnib (Zokinvy) for the treatment of Hutchinson-Gilford progeria syndrome and processing-deficient progeroid laminopathies. Genet Med. 2023;25:100335.

    Article  CAS  PubMed  Google Scholar 

  25. Arnold R, Vehns E, Randl H, et al. Baricitinib, a JAK-STAT Inhibitor, Reduces the Cellular Toxicity of the Farnesyltransferase Inhibitor Lonafarnib in Progeria Cells. Int J Mol Sci. 2021;22:7474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abuhaie CM, Ghinet A, Farce A, et al. Synthesis and biological evaluation of a new series of phenothiazine-containing protein farnesyltransferase inhibitors. Eur J Med Chem. 2013;59:101–10.

    Article  CAS  PubMed  Google Scholar 

  27. Dumitriu GM, Ghinet A, Bîcu E, et al. Peptide chemistry applied to a new family of phenothiazine-containing inhibitors of human farnesyltransferase. Bioorg Med Chem Lett. 2014;24:3180–5.

    Article  CAS  PubMed  Google Scholar 

  28. Dumitriu GM, Bîcu E, Belei D, et al. Phenothiazine-based CaaX competitive inhibitors of human farnesyltransferase bearing a cysteine, methionine, serine or valine moiety as a new family of antitumoral compounds. Bioorg Med Chem Lett. 2015;25:4447–52.

    Article  CAS  PubMed  Google Scholar 

  29. Moise IM, Ghinet A, Belei D, et al. New indolizine-chalcones as potent inhibitors of human farnesyltransferase: Design, synthesis and biological evaluation. Bioorg Med Chem Lett. 2016;26:3730–4.

    Article  CAS  PubMed  Google Scholar 

  30. Moise IM, Bîcu E, Farce A, et al. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorg Chem. 2020;103:104184.

    Article  CAS  PubMed  Google Scholar 

  31. Dumitriu G-M, Ghinet A, Belei D, et al. Investigation of New Phenothiazine and Carbazole Derivatives as Potential Inhibitors of Human Farnesyltransferase. Lett Drug Des Discov. 2015;12:85–92.

    Article  CAS  Google Scholar 

  32. Ghasemi S, Sharifi S, Davaran S, et al. Synthesis and cytotoxicity evaluation of some novel 1-(3-Chlorophenyl) piperazin-2-one derivatives bearing imidazole bioisosteres. Aust J Chem. 2013;66:655–60.

    Article  CAS  Google Scholar 

  33. Ghasemi S, Sharifi S, Shahbazi Mojarrad J. Design, Synthesis and Biological Evaluation of Novel Piperazinone Derivatives as Cytotoxic Agents. Adv Pharm Bull. 2020;10:423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abuhaie CM, Ghinet A, Farce A, et al. Synthesis and biological evaluation of a new series of N-ylides as protein farnesyltransferase inhibitors. Bioorg Med Chem Lett. 2013;23:5887–92.

    Article  CAS  PubMed  Google Scholar 

  35. Dumea C, Belei D, Ghinet A, et al. Novel indolizine derivatives with unprecedented inhibitory activity on human farnesyltransferase. Bioorg Med Chem Lett. 2014;24:5777–81.

    Article  CAS  PubMed  Google Scholar 

  36. Yang L, Liu W, Mei H, et al. Synthesis and biological evaluation of pentanedioic acid derivatives as farnesyltransferase inhibitors. Medchemcomm. 2015;6:671–6.

    Article  CAS  Google Scholar 

  37. Lucescu L, Bîcu E, Belei D, et al. Synthesis and biological evaluation of a new class of triazin-triazoles as potential inhibitors of human farnesyltransferase. Res Chem Intermed. 2016;42:1999–2021.

    Article  CAS  Google Scholar 

  38. Homerin G, Lipka E, Rigo B, et al. On the discovery of new potent human farnesyltransferase inhibitors: emerging pyroglutamic derivatives. Org Biomol Chem. 2017;15:8110–8.

    Article  CAS  PubMed  Google Scholar 

  39. Jin Y, Li L, Yang Z, et al. The discovery of a novel compound with potent antitumor activity: virtual screening, synthesis, biological evaluation and preliminary mechanism study. Oncotarget. 2017;8:24635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kazi A, Xiang S, Yang H, et al. Dual Farnesyl and Geranylgeranyl Transferase Inhibitor Thwarts Mutant KRAS-Driven Patient-Derived Pancreatic Tumors. Clin Cancer Res. 2019;25:5984–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka A, Radwan MO, Hamasaki A, et al. A novel inhibitor of farnesyltransferase with a zinc site recognition moiety and a farnesyl group. Bioorg Med Chem Lett. 2017;27:3862–6.

    Article  CAS  PubMed  Google Scholar 

  42. Tsubamoto M, Le TK, Li M, et al. A Guanidyl-Based Bivalent Peptidomimetic Inhibits K-Ras Prenylation and Association with c-Raf. Chemistry. 2019;25:13531–6.

    Article  CAS  PubMed  Google Scholar 

  43. Pesquet A, Marzag H, Knorr M, et al. Access to 3-spiroindolizines containing an isoindole ring through intra-molecular arylation of spiro-N-acyliminium species: a new family of potent farnesyltransferase inhibitors. Org Biomol Chem. 2019;17:2798–808.

    Article  CAS  PubMed  Google Scholar 

  44. Rampogu S, Baek A, Son M, et al. Discovery of Lonafarnib-Like Compounds: Pharmacophore Modeling and Molecular Dynamics Studies. ACS Omega. 2020;5:1773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Safavi A, Ghodousi ES, Ghavamizadeh M, et al. Computational investigation of novel farnesyltransferase inhibitors using 3D-QSAR pharmacophore modeling, virtual screening, molecular docking and molecular dynamics simulation studies: A new insight into cancer treatment. J Mol Struct. 2021;1241: 130667.

  46. Yang W, Wang K, Wu H, et al. Peptide scaffold‐derived peptidomimetic farnesyltransferase inhibitors. J Chin Chem Soc. 2021;68:1778–88.

    Article  CAS  Google Scholar 

  47. Pierrick D, Marie H, Adam D, et al. Green synthesis of a new series of pyroglutamides targeting human farnesyltransferase. Sustainable Chem Pharmacy. 2022;30:100894.

  48. Bellesia F, Choi SR, Felluga F, et al. Novel route to chaetomellic acid A and analogues: serendipitous discovery of a more competent FTase inhibitor. Bioorg Med Chem. 2013;21:348–58.

    Article  CAS  PubMed  Google Scholar 

  49. Cadelis MM, Bourguet-Kondracki ML, Dubois J, et al. Discovery and preliminary structure-activity relationship studies on tecomaquinone I and tectol as novel farnesyltransferase and plasmodial inhibitors. Bioorg Med Chem. 2016;24:3102–7.

    Article  CAS  PubMed  Google Scholar 

  50. Kim J, Park M, Choi J, et al. Design, synthesis, and biological evaluation of novel pyrrolo[1,2-a]pyrazine derivatives. Bioorg Med Chem Lett. 2019;29:1350–6.

    Article  CAS  PubMed  Google Scholar 

  51. Lucescu L, Ghinet A, Shova S, et al. Exploring isoxazoles and pyrrolidinones decorated with the 4,6-dimethoxy-1,3,5-triazine unit as human farnesyltransferase inhibitors. Arch Pharm (Weinh). 2019;352:e1800227.

    Article  Google Scholar 

  52. Bukhtiyarova M, Cook EM, Hancock PJ, et al. Discovery of an Anion-Dependent Farnesyltransferase Inhibitor from a Phenotypic Screen. ACS Med Chem Lett. 2020;12:99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Homerin G, Nica AS, Farce A, et al. Ultrasounds-mediated 10-seconds synthesis of chalcones as potential farnesyltransferase inhibitors. Bioorg Med Chem Lett. 2020;30:127149.

    Article  CAS  PubMed  Google Scholar 

  54. Nguyen UT, Goody RS, Alexandrov K. Understanding and exploiting protein prenyltransferases. Chembiochem. 2010;11:1194–201.

    Article  CAS  PubMed  Google Scholar 

  55. Moorthy NS, Sousa SF, Ramos MJ, et al. Farnesyltransferase inhibitors: a comprehensive review based on quantitative structural analysis. Curr Med Chem. 2013;20:4888–923.

    Article  CAS  PubMed  Google Scholar 

  56. Haluska P, Dy GK, Adjei AA. Farnesyl transferase inhibitors as anticancer agents. Eur J Cancer. 2002;38:1685–700.

    Article  CAS  PubMed  Google Scholar 

  57. Agrawal AG, Somani RR. Farnesyltransferase inhibitor as anticancer agent. Mini Rev Med Chem. 2009;9:638–52.

    Article  CAS  PubMed  Google Scholar 

  58. Reiss Y, Goldstein JL, Seabra MC, et al. Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell. 1990;62:81–88.

    Article  CAS  PubMed  Google Scholar 

  59. Tsimberidou AM, Chandhasin C, Kurzrock R. Farnesyltransferase inhibitors: where are we now? Expert Opin Investig Drugs. 2010;19:1569–80.

    Article  CAS  PubMed  Google Scholar 

  60. Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011;2:344–58.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Oikonomou E, Koustas E, Goulielmaki M, et al. BRAF vs RAS oncogenes: are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014;5:11752–77.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Park HW, Boduluri SR, Moomaw JF, et al. Crystal structure of protein farnesyltransferase at 2.25 angstrom resolution. Science. 1997;275:1800–4.

    Article  CAS  PubMed  Google Scholar 

  63. Subramanian T, Liu S, Troutman JM, et al. Protein farnesyltransferase-catalyzed isoprenoid transfer to peptide depends on lipid size and shape, not hydrophobicity. Chembiochem. 2008;9:2872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sousa SF, Fernandes PA, Ramos MJ. Farnesyltransferase inhibitors: a detailed chemical view on an elusive biological problem. Curr Med Chem. 2008;15:1478–92.

    Article  CAS  PubMed  Google Scholar 

  65. Klochkov SG, Neganova ME, Yarla NS, et al. Implications of farnesyltransferase and its inhibitors as a promising strategy for cancer therapy. Semin Cancer Biol. 2019;56:128–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.82204210), the Hebei Natural Science Foundation (NO. H2022406062), the Funded by Science and Technology Project of Hebei Education Department (NO. QN2022161), the 2022 Research Start‐up Fund for High‐level Talents of Chengde Medical University (NO. 202207), and the Chengde Medical University basic research funds special project (NO. KY202315).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-xin Miao or Shuai Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Mt., Yu, L., Yan, Zw. et al. FTase inhibitors and cancer: prospects for use in targeted therapies. Med Chem Res 33, 21–35 (2024). https://doi.org/10.1007/s00044-023-03171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03171-2

Keywords

Navigation