Skip to main content

Advertisement

Log in

The trimethoxyphenyl (TMP) functional group: a versatile pharmacophore

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The Trimethoxyphenyl (TMP) group serves as a pharmacophore in numerous potent agents exhibiting diverse bioactivity effects. This moiety is prominently present in the molecular structures of various research studies, demonstrating remarkable multi-activity or specific targeting, surpassing the activity of other derivatives at comparable concentrations. The compounds containing the TMP group have displayed notable anti-cancer effects by effectively inhibiting tubulin, heat shock protein 90 (Hsp90), thioredoxin reductase (TrxR), histone lysine-specific demethylase 1 (HLSD1), activin receptor-like kinase-2 (ALK2), P-glycoprotein (P-gp), and platelet-derived growth factor receptor β. Furthermore, select TMP-bearing compounds have shown promising anti-fungal and anti-bacterial properties, including activities against Helicobacter pylori and Mycobacterium tuberculosis. Additionally, there have been reports on the antiviral activity of TMP-based compounds, which hold potential against viruses such as the acquired immunodeficiency syndrome (AIDS) virus, hepatitis C virus, and influenza virus. Compounds containing the TMP pharmacophore have also demonstrated significant efficacy against Leishmania, Malaria, and Trypanosoma, indicating their potential as anti-parasitic agents. Furthermore, these compounds have been associated with anti-inflammatory, anti-Alzheimer, anti-depressant, and anti-migraine properties, thereby expanding their therapeutic scope. This paper presents a comprehensive and categorized review of these diverse properties of TMP-bearing compounds, shedding light on their potential as valuable agents across a wide range of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

TMP :

trimethoxyphenyl;

DHFR :

dihydrofolate reductase

CA :

combretastatin

CBS :

colchicine binding site

Hsp90 :

heat shock protein90

TrxR :

thioredoxin reductase

HLSD1 :

histone lysine-specific demethylase 1

ALK2 :

activin receptor-like kinase-2

VEGFR2 :

vascular endothelial growth factor 2

P-gp :

P-glycoprotein

PAF :

platelet-activating factor

COX-1 and COX-2 :

cyclooxygenase 1 and 2

ALS :

amyotrophic lateral sclerosis

EGFR :

endothelial growth factor receptor

WHO :

world health organization

MTT :

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

DPPH :

2,2-diphenyl-1-picrylhydrazyl free radical

NDI :

1,4,5,8-naphthalenetetracarboxylic diimide

ERK2 :

Extracellular Signal Regulated Kinase 2

MTAs :

Microtubules targeting agents

MAPs :

microtubule-associated proteins

ITP :

inhibitions of tubulin polymerization

GTP :

guanosine triphosphate

TPI :

tubulin polymerization inhibitory

IC 50 :

half-maximal inhibitory concentration

CC 50 :

median cytotoxic concentration, compound concentration (μM) required to reduce the viability of mock-infected MT-4 cells by 50%, as determined by the MTT method

GI 50 :

growth inhibitory 50%

EC 50 :

half maximal effective concentration

LD 50 :

lethal dose 50%

PDGF-Rβ :

platelet-derived growth factor receptor β

MIC :

minimal inhibitory concentration

HCV :

hepatitis C virus

GAK :

Cyclin-G associated kinase

SAR :

structure-activity relationship

FP-2 :

falcipain-2

NF-Κb :

Nuclear factor kappa B

MAPKs :

mitogen-activated protein kinases

TNF-α :

tumor necrosis factor alpha

IL-6 :

interleukin 6

TGI :

total growth inhibition

ALI :

acute lung injury

NO :

nitric oxide

LPS :

lipopolysaccharides

TLR4 :

toll-like receptor 4

AChE :

acetylcholinesterase enzyme

FKBP51 :

FK506-binding protein 51

5-HT2B :

5-hydroxytryptamine receptor 2B

ED 50 :

median effective dose

MAPs :

microtubule-associated proteins

PL :

piperlongumine

References

  1. Elagawany M, Schmitt M, Ghiaty A, El-Etrawy A, Ibrahim M, Bihel F, et al. Synthesis and antiproliferative effects of 5,6-disubstituted pyridazin-3(2H)-ones designed as conformationally constrained combretastatin A-4 analogues. Anti-Cancer Agents Med Chem. 2013;13:1133–40. https://doi.org/10.2174/1871520611313070018

    Article  CAS  Google Scholar 

  2. Negi AS, Gautam Y, Alam S, Chanda D, Luqman S, Sarkar J, et al. Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment. Bioorg Med Chem. 2015;23:373–89. https://doi.org/10.1016/j.bmc.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  3. Wen Z, Xu J, Wang Z, Qi H, Xu Q, Bai Z, et al. 3-(3,4,5-Trimethoxyphenylselenyl)-1 H -indoles and their selenoxides as combretastatin A-4 analogs: Microwave-assisted synthesis and biological evaluation. Eur J Med Chem. 2015;90:184–94. https://doi.org/10.1016/j.ejmech.2014.11.024

    Article  CAS  PubMed  Google Scholar 

  4. El-Subbagh HI, Hassan GS, El-Messery SM, Al-Rashood ST, Al-Omary FAM, Abulfadl YS, et al. Nonclassical antifolates, part 5. Benzodiazepine analogs as a new class of DHFR inhibitors: Synthesis, antitumor testing and molecular modeling study. Eur J Med Chem. 2014;74:234–45. https://doi.org/10.1016/j.ejmech.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  5. Li X, Hilgers M, Cunningham M, Chen Z, Trzoss M, Zhang J, et al. Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines. Bioorg Med Chem Lett. 2011;21:5171–6. https://doi.org/10.1016/j.bmcl.2011.07.059

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhary A, Sharma PP, Bhardwaj G, Jain V, Bharatam PV, Shrivastav B, et al. Synthesis, biological evaluation, and molecular modeling studies of novel heterocyclic compounds as anti-proliferative agents. Med Chem Res. 2013;22:5654–69. https://doi.org/10.1007/s00044-013-0556-x

    Article  CAS  Google Scholar 

  7. Novoa A, Pellegrini-Moïse N, Bourg S, Thoret S, Dubois J, Aubert G, et al. Design, synthesis and antiproliferative activities of biarylolefins based on polyhydroxylated and carbohydrate scaffolds. Eur J Med Chem. 2011;46:3570–80. https://doi.org/10.1016/j.ejmech.2011.05.021

    Article  CAS  PubMed  Google Scholar 

  8. Jeong CH, Park HB, Jang WJ, Jung SH, Seo YH. Discovery of hybrid Hsp90 inhibitors and their anti-neoplastic effects against gefitinib-resistant non-small cell lung cancer (NSCLC). Bioorg Med Chem Lett. 2014;24:224–7. https://doi.org/10.1016/j.bmcl.2013.11.034

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Zhang LP, Dai F, Yan WJ, Wang HB, Tu ZS, et al. Hexamethoxylated monocarbonyl analogues of curcumin cause G2/M cell cycle arrest in NCI-H460 cells via michael acceptor-dependent redox intervention. J Agric Food Chem. 2015;63:7731–42. https://doi.org/10.1021/acs.jafc.5b02011

    Article  CAS  PubMed  Google Scholar 

  10. Ma LY, Zheng YC, Wang SQ, Wang B, Wang ZR, Pang LP, et al. Design, synthesis, and structure-activity relationship of novel lsd1 inhibitors based on pyrimidine-thiourea hybrids as potent, orally active antitumor agents. J Med Chem. 2015;58:1705–16. https://doi.org/10.1021/acs.jmedchem.5b00037

    Article  CAS  PubMed  Google Scholar 

  11. Mohedas AH, Wang Y, Sanvitale CE, Canning P, Choi S, Xing X, et al. Structure-activity relationship of 3,5-diaryl-2-aminopyridine ALK2 inhibitors reveals unaltered binding affinity for fibrodysplasia ossificans progressiva causing mutants. J Med Chem. 2014;57:7900–15. https://doi.org/10.1021/jm501177w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh S, Prasad NR, Chufan EE, Patel BA, Wang YJ, Chen ZS, et al. Design and synthesis of human ABCB1 (P-glycoprotein) inhibitors by peptide coupling of diverse chemical scaffolds on carboxyl and amino termini of (S)-valine-derived thiazole amino acid. J Med Chem. 2014;57:4058–72. https://doi.org/10.1021/jm401966m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bin JW, Wong ILK, Hu X, Yu ZX, Xing LF, Jiang T, et al. Structure-activity relationship study of permethyl ningalin B analogues as P-glycoprotein chemosensitizers. J Med Chem. 2013;56:9057–70. https://doi.org/10.1021/jm400930e

    Article  CAS  PubMed  Google Scholar 

  14. Silva T, Reis J, Teixeira J, Borges F. Alzheimer’s disease, enzyme targets and drug discovery struggles: From natural products to drug prototypes. Ageing Res Rev. 2014;15:116–45. https://doi.org/10.1016/j.arr.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  15. Horbert R, Pinchuk B, Johannes E, Schlosser J, Schmidt D, Cappel D, et al. Optimization of potent dfg-in inhibitors of platelet derived growth factor receptorβ (PDGF-Rβ) guided by water thermodynamics. J Med Chem. 2015;58:170–82. https://doi.org/10.1021/jm500373x

    Article  CAS  PubMed  Google Scholar 

  16. Chavan HV, Bandgar BP, Adsul LK, Dhakane VD, Bhale PS, Thakare VN, et al. Design, synthesis, characterization and anti-inflammatory evaluation of novel pyrazole amalgamated flavones. Bioorg Med Chem Lett. 2013;23:1315–21. https://doi.org/10.1016/j.bmcl.2012.12.094

    Article  CAS  PubMed  Google Scholar 

  17. Sriram D, Ratan Bal T, Yogeeswari P. Aminopyimidinimo isatin analogues: design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broadspectrum chemotherapeutic properties. J Pharm Pharm Sci. 2005;8:565–77.

    CAS  PubMed  Google Scholar 

  18. Kovackova S, Chang L, Bekerman E, Neveu G, Barouch-Bentov R, Chaikuad A, et al. Selective inhibitors of cyclin G associated kinase (GAK) as anti-hepatitis C agents. J Med Chem. 2015;58:3393–410. https://doi.org/10.1021/jm501759m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ponnala S, Kapadia N, Harding WW. Erratum: Identification of tris-(phenylalkyl)amines as new selective h5-HT2B receptor antagonists (Med Chem Comm (2015). MedChemComm.2015;6:732. https://doi.org/10.1039/c5md90005k. https://doi.org/10.1039/c4md00418c.

  20. Salado IG, Redondo M, Bello ML, Perez C, Liachko NF, Kraemer BC, et al. Protein kinase CK-1 inhibitors as new potential drugs for amyotrophic lateral sclerosis. J Med Chem. 2014;57:2755–72. https://doi.org/10.1021/jm500065f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sashidhara KV, Modukuri RK, Singh S, Bhaskara Rao K, Aruna Teja G, Gupta S, et al. Design and synthesis of new series of coumarin-aminopyran derivatives possessing potential anti-depressant-like activity. Bioorg Med Chem Lett. 2015;25:337–41. https://doi.org/10.1016/j.bmcl.2014.11.036

    Article  CAS  PubMed  Google Scholar 

  22. Gaali S, Kirschner A, Cuboni S, Hartmann J, Kozany C, Balsevich G, et al. Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol. 2015;11:33–37. https://doi.org/10.1038/nchembio.1699

    Article  CAS  PubMed  Google Scholar 

  23. Abdel-Aziz AAM, Eltahir KEH, Asiri YA. Synthesis, anti-inflammatory activity and COX-1/COX-2 inhibition of novel substituted cyclic imides. Part 1: Molecular docking study. Eur J Med Chem. 2011;46:1648–1655. https://doi.org/10.1016/j.ejmech.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Abdel-Aziz M, Beshr EA, Abdel-Rahman IM, Ozadali K, Tan OU, Aly OM. 1-(4-Methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazole-3- carboxamides: Synthesis, molecular modeling, evaluation of their anti-inflammatory activity and ulcerogenicity. Eur J Med Chem. 2014;77:155–65. https://doi.org/10.1016/j.ejmech.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  25. Salum LB, Altei WF, Chiaradia LD, Cordeiro MNS, Canevarolo RR, Melo CPS, et al. Cytotoxic 3,4,5-trimethoxychalcones as mitotic arresters and cell migration inhibitors. Eur J Med Chem. 2013;63:501–10. https://doi.org/10.1016/j.ejmech.2013.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Assadieskandar A, Amini M, Ostad SN, Riazi GH, Cheraghi-Shavi T, Shafiei B, et al. Design, synthesis, cytotoxic evaluation and tubulin inhibitory activity of 4-aryl-5-(3,4,5-trimethoxyphenyl)-2-alkylthio-1H-imidazole derivatives. Bioorg Med Chem. 2013;21:2703–9. https://doi.org/10.1016/j.bmc.2013.03.011

    Article  CAS  PubMed  Google Scholar 

  27. Taldone T, Chiosis G. Purine-scaffold Hsp90 inhibitors. Curr Top Med Chem. 2009;9:1436–46. https://doi.org/10.2174/156802609789895737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taldone T, Sun W, Chiosis G. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem. 2009;17:2225–35. https://doi.org/10.1016/j.bmc.2008.10.087

    Article  CAS  PubMed  Google Scholar 

  29. Zurlo M, Romagnoli R, Oliva P, Gasparello J, Finotti A, Gambari R. Synergistic effects of a combined treatment of glioblastoma U251 cells with An Anti-miR-10b-5p molecule and an anticancer agent based on 1-(3′,4′,5′-Trimethoxyphenyl)-2-Aryl-1H-Imidazole scaffold. Int J Mol Sci. 2022;23:5991 https://doi.org/10.3390/ijms23115991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gangjee A, Namjoshi OA, Raghavan S, Queener SF, Kisliuk RL, Cody V. Design, synthesis, and molecular modeling of novel pyrido[2,3-d]pyrimidine analogues as antifolates; Application of buchwald-hartwig aminations of heterocycles. J Med Chem. 2013;56:4422–41. https://doi.org/10.1021/jm400086g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gigant B, Cormier A, Dorléans A, Ravelli RBG, Knossow M. Microtubule-destabilizing agents: Structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top Curr Chem. 2009;286:259–78. https://doi.org/10.1007/128_2008_11

    Article  CAS  PubMed  Google Scholar 

  32. Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9:448–51. https://doi.org/10.21037/jtd.2017.02.75

    Article  PubMed  PubMed Central  Google Scholar 

  33. Marrett LD, De P, Airia P, Dryer D. Cancer in Canada in 2008. Can Med Assoc J. 2008;179:1163–70. https://doi.org/10.1503/cmaj.080760

    Article  Google Scholar 

  34. Chorawala M, Oza P, Shah G. Mechanisms of anticancer drugs resistance: an overview. Int J Pharm Sci Drug Res. 2012;4:1–9.

    Google Scholar 

  35. Lu D-Y, Lu T-R, Zhu H, Ding J, Xu B. Anticancer drug development, getting out from bottleneck. Med Chem. 2017;07:423 https://doi.org/10.4172/2161-0444.1000423

    Article  CAS  Google Scholar 

  36. Andreani A, Granaiola M, Locatelli A, Morigi R, Rambaldi M, Varoli L, et al. Cytotoxic activities of substituted 3-(3,4,5-trimethoxybenzylidene)-1,3- dihydroindol-2-ones and studies on their mechanisms of action. Eur J Med Chem. 2013;64:603–12. https://doi.org/10.1016/j.ejmech.2013.03.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Banimustafa M, Kheirollahi A, Safavi M, Kabudanian Ardestani S, Aryapour H, Foroumadi A, et al. Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs. Eur J Med Chem. 2013;70:692–702. https://doi.org/10.1016/j.ejmech.2013.10.046

    Article  CAS  PubMed  Google Scholar 

  38. Greene LM, Wang S, O’Boyle NM, Bright SA, Reid JE, Kelly P, et al. Combretazet-3 a novel synthetic cis-stable combretastatin A-4-azetidinone hybrid with enhanced stability and therapeutic efficacy in colon cancer. Oncol Rep. 2013;29:2451–58. https://doi.org/10.3892/or.2013.2379

    Article  CAS  PubMed  Google Scholar 

  39. Kumar S, Sapra S, Kumar R, Gupta MK, Koul S, Kour T, et al. Synthesis of combretastatin analogs: evaluation of in vitro anticancer activity and molecular docking studies. Med Chem Res. 2012;21:3720–29. https://doi.org/10.1007/s00044-011-9887-7

    Article  CAS  Google Scholar 

  40. Kumar S, Mehndiratta S, Nepali K, Gupta MK, Koul S, Sharma PR, et al. Novel indole-bearing combretastatin analogues as tubulin polymerization inhibitors. Org Medicinal Chem Lett. 2013;3:3 https://doi.org/10.1186/2191-2858-3-3

    Article  CAS  Google Scholar 

  41. Zhao PL, Duan AN, Zou M, Yang HK, You WW, Wu SG. Synthesis and cytotoxicity of 3,4-disubstituted-5-(3,4,5-trimethoxyphenyl)- 4H-1,2,4-triazoles and novel 5,6-dihydro-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazole derivatives bearing 3,4,5-trimethoxyphenyl moiety. Bioorg Med Chem Lett. 2012;22:4471–4. https://doi.org/10.1016/j.bmcl.2012.03.023

    Article  CAS  PubMed  Google Scholar 

  42. Yonova IM, Osborne CA, Morrissette NS, Jarvo ER. Diaryl and heteroaryl sulfides: Synthesis via sulfenyl chlorides and evaluation as selective anti-breast-cancer agents. J Org Chem. 2014;79:1947–53. https://doi.org/10.1021/jo402586v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamal A, Tamboli JR, Nayak VL, Adil SF, Vishnuvardhan MVPS, Ramakrishna S. Synthesis of pyrazolo[1,5-a]pyrimidine linked aminobenzothiazole conjugates as potential anticancer agents. Bioorg Med Chem Lett. 2013;23:3208–15. https://doi.org/10.1016/j.bmcl.2013.03.129

    Article  CAS  PubMed  Google Scholar 

  44. Nofal ZM, Soliman EA, Abd El-Karim SS, El-Zahar MI, Srour AM, Sethumadhavan S, et al. Novel benzimidazole derivatives as expected anticancer agents. Acta Poloniae Pharmaceutica - Drug Res. 2011;68:519–34.

    CAS  Google Scholar 

  45. Chen T, Luo Y, Hu Y, Yang B, Lu W. Synthesis and biological evaluation of novel 1,6-diaryl pyridin-2(1H)-one analogs. Eur J Med Chem. 2013;64:613–20. https://doi.org/10.1016/j.ejmech.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  46. Shoaib Ahmad Shah S, Rivera G, Ashfaq M. Recent advances in medicinal chemistry of sulfonamides. rational design as anti-tumoral, anti-bacterial and anti-inflammatory agents. Mini-Rev Med Chem. 2012;13:70–86. https://doi.org/10.2174/13895575130107

    Article  Google Scholar 

  47. Al-Suwaidan IA, Alanazi AM, Abdel-Aziz AAM, Mohamed MA, El-Azab AS. Design, synthesis and biological evaluation of 2-mercapto-3- phenethylquinazoline bearing anilide fragments as potential antitumor agents: molecular docking study. Bioorg Med Chem Lett. 2013;23:3935–41. https://doi.org/10.1016/j.bmcl.2013.04.056

    Article  CAS  PubMed  Google Scholar 

  48. Al-Suwaidan IA, Abdel-Aziz AA-M, Shawer TZ, Ayyad RR, Alanazi AM, El-Morsy AM, et al. Synthesis, antitumor activity and molecular docking study of some novel 3-benzyl-4(3H)quinazolinone analogues. J Enzym Inhibition Med Chem. 2016;31:78–89. https://doi.org/10.3109/14756366.2015.1004059

    Article  CAS  Google Scholar 

  49. Shenvi S, Kumar K, Hatti KS, Rijesh K, Diwakar L, Reddy GC. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure-activity relationship. Eur J Med Chem. 2013;62:435–42. https://doi.org/10.1016/j.ejmech.2013.01.018

    Article  CAS  PubMed  Google Scholar 

  50. Bollinger A, Brandt ON, Stettler LD, Ream A, Kopysciansky VT, Nelson CA, et al. Sulfide-linked 3,4,5-trimethoxyphenyl-thiosemicarbazide/triazole hybrids: Synthesis, antioxidant, antiglycation, DNA cleavage and DNA molecular docking studies. Results Chem. 2023;5:100806. https://doi.org/10.1016/j.rechem.2023.100806

    Article  CAS  Google Scholar 

  51. Milelli A, Tumiatti V, Micco M, Rosini M, Zuccari G, Raffaghello L, et al. Structure-activity relationships of novel substituted naphthalene diimides as anticancer agents. Eur J Med Chem. 2012;57:417–28. https://doi.org/10.1016/j.ejmech.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  52. Shen LH, Li HY, Shang HX, Tian ST, Lai YS, Liu LJ. Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties. Chin Chem Lett. 2013;24:299–302. https://doi.org/10.1016/j.cclet.2013.01.052

    Article  CAS  Google Scholar 

  53. Alqasoumi SI, Al-Taweel AM, Alafeefy AM, Hamed MM, Noaman E, Ghorab MM. Synthesis and biological evaluation of 2-amino-7,7-dimethyl 4-substituted-5-oxo-1-(3,4,5-trimethoxy)-1,4,5,6,7,8-hexahydro-quinoline-3-carbonitrile derivatives as potential cytotoxic agents. Bioorg Med Chem Lett. 2009;19:6939–42. https://doi.org/10.1016/j.bmcl.2009.10.065

    Article  CAS  PubMed  Google Scholar 

  54. Borys F, Joachimiak E, Krawczyk H, Fabczak H. Intrinsic and extrinsic factors affecting microtubule dynamics in normal and cancer cells. Molecules. 2020;25:3705 https://doi.org/10.3390/molecules25163705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Knossow M, Campanacci V, Khodja LA, Gigant B. The mechanism of tubulin assembly into microtubules: insights from structural studies. iScience. 2020;23:101511 https://doi.org/10.1016/j.isci.2020.101511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochimica et Biophys Acta - Rev Cancer. 2008;1785:96–132. https://doi.org/10.1016/j.bbcan.2007.10.004

    Article  CAS  Google Scholar 

  57. Downing KH, Nogales E. Tubulin and microtubule structure. Curr Opin Cell Biol. 1998;10:16–22. https://doi.org/10.1016/S0955-0674(98)80082-3

    Article  CAS  PubMed  Google Scholar 

  58. Nogales E. Tubulin and Its Isoforms. Reference Module in Biomedical Sciences (Elsevier, 2018) https://doi.org/10.1016/B978-0-12-801238-3.11142-0.

  59. Gotow T. Neurofilament Cross-Bridge – A Structure Associated Specifically with the Neurofilament Among the Intermediate Filament Family. (2011), pp. 225–247 https://doi.org/10.1007/978-1-4419-6787-9_10.

  60. Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Therapeut. 2014;13:275–84. https://doi.org/10.1158/1535-7163.MCT-13-0791

    Article  CAS  Google Scholar 

  61. Wade RH. On and around microtubules: an overview. Mol Biotechnol. 2009;43:177–91. https://doi.org/10.1007/s12033-009-9193-5

    Article  CAS  PubMed  Google Scholar 

  62. Katsetos CD, Legido A, Perentes E, Mörk SJ. Class III β-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. J Child Neurol. 2003;18:851–66. https://doi.org/10.1177/088307380301801205

    Article  PubMed  Google Scholar 

  63. Dumontet C, Jordan MA. Microtubule-binding agents: A dynamic field of cancer therapeutics (Nature Reviews Drug Discovery (2010) 9 (790-803)). Nat Rev Drug Discov. 2010;9:897. https://doi.org/10.1038/nrd3313

    Article  CAS  Google Scholar 

  64. Kim ND, Park ES, Kim YH, Moon SK, Lee SS, Ahn SK, et al. Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg Med Chem. 2010;18:7092–100. https://doi.org/10.1016/j.bmc.2010.07.072

    Article  CAS  PubMed  Google Scholar 

  65. Ducki S, Mackenzie G, Greedy B, Armitage S, Chabert JFD, Bennett E, et al. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2: Structure-based discovery of alpha-aryl chalcones. Bioorg Med Chem. 2009;17:7711–22. https://doi.org/10.1016/j.bmc.2009.09.044

    Article  CAS  PubMed  Google Scholar 

  66. Coluccia A, Sabbadin D, Brancale A. Molecular modelling studies on Arylthioindoles as potent inhibitors of tubulin polymerization. Eur J Med Chem. 2011;46:3519–25. https://doi.org/10.1016/j.ejmech.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  67. Carlomagno T, Altmann K, Tubulin-binding Agents: Synthetic, Structural and Mechanistic Insights (Springer, 2009).

  68. Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev. 2011;31:443–81. https://doi.org/10.1002/med.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Álvarez R, López V, Mateo C, Medarde M, Peláez R. P, p -dihydroxydihydrostilbenophanes related to antimitotic combretastatins. Conformational analysis and its relationship to tubulin Inhibition. J Org Chem. 2014;79:6840–57. https://doi.org/10.1021/jo500798r

    Article  CAS  PubMed  Google Scholar 

  70. Barrett I, Carr M, O’Boyle N, Greene LM, Knox AJS, Lloyd DG, et al. Lead identification of conformationally restricted benzoxepin type combretastatin analogs: Synthesis, antiproliferative activity, and tubulin effects. J Enzym Inhibition Med Chem. 2010;25:180–94. https://doi.org/10.3109/14756360903169659

    Article  CAS  Google Scholar 

  71. Li YW, Liu J, Liu N, Shi D, Zhou XT, Lv JG, et al. Imidazolone-amide bridges and their effects on tubulin polymerization in cis-locked vinylogous combretastatin-A4 analogues: Synthesis and biological evaluation. Bioorg Med Chem. 2011;19:3579–84. https://doi.org/10.1016/j.bmc.2011.03.068

    Article  CAS  PubMed  Google Scholar 

  72. Mikstacka R, Stefański T, Różański J. Tubulin-interactive stilbene derivatives as anticancer agents. Cell Mol Biol Lett. 2013;18:368–97. https://doi.org/10.2478/s11658-013-0094-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carr M, Greene LM, Knox AJS, Lloyd DG, Zisterer DM, Meegan MJ. Lead identification of conformationally restricted β-lactam type combretastatin analogues: Synthesis, antiproliferative activity and tubulin targeting effects. Eur J Med Chem. 2010;45:5752–66. https://doi.org/10.1016/j.ejmech.2010.09.033

    Article  CAS  PubMed  Google Scholar 

  74. O’Boyle NM, Greene LM, Bergin O, Fichet JB, McCabe T, Lloyd DG, et al. Synthesis, evaluation and structural studies of antiproliferative tubulin-targeting azetidin-2-ones. Bioorg Med Chem. 2011;19:2306–25. https://doi.org/10.1016/j.bmc.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  75. Da C, Telang N, Hall K, Kluball E, Barelli P, Finzel K, et al. Developing novel C-4 analogues of pyrrole-based antitubulin agents: weak but critical hydrogen bonding in the colchicine site. MedChemComm. 2013;4:417–21. https://doi.org/10.1039/c2md20320k

    Article  CAS  PubMed  Google Scholar 

  76. Ghinet A, Tourteau A, Rigo B, Stocker V, Leman M, Farce A, et al. Synthesis and biological evaluation of fluoro analogues of antimitotic phenstatin. Bioorg Med Chem. 2013;21:2932–40. https://doi.org/10.1016/j.bmc.2013.03.064

    Article  CAS  PubMed  Google Scholar 

  77. Verones V, Flouquet N, Lecoeur M, Lemoine A, Farce A, Baldeyrou B, et al. Synthesis, antiproliferative activity and tubulin targeting effect of acridinone and dioxophenothiazine derivatives. Eur J Med Chem. 2013;59:39–47. https://doi.org/10.1016/j.ejmech.2012.10.051

    Article  CAS  PubMed  Google Scholar 

  78. Zheng C-H, Chen J, Liu J, Zhou X-T, Liu N, Shi D, et al. Synthesis and biological evaluation of 1-phenyl-1,2,3,4-dihydroisoquinoline compounds as tubulin polymerization inhibitors. Arch der Pharmazie. 2012;345:454–62. https://doi.org/10.1002/ardp.201100169

    Article  CAS  Google Scholar 

  79. Beale TM, Bond PJ, Brenton JD, Charnock-Jones DS, Ley SV, Myers RM. Increased endothelial cell selectivity of triazole-bridged dihalogenated A-ring analogues of combretastatin A-1. Bioorg Med Chem. 2012;20:1749–59. https://doi.org/10.1016/j.bmc.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  80. Greene LM, Nathwani SM, Bright SA, Fayne D, Croke A, Gagliardi M, et al. The vascular targeting agent combretastatin-A4 and a novel cis-restricted β-lactam analogue, CA-432, induce apoptosis in human chronic myeloid leukemia cells and ex vivo patient samples including those displaying multidrug resistance. J Pharmacol Exp Therapeut. 2010;335:302–13. https://doi.org/10.1124/jpet.110.170415

    Article  CAS  Google Scholar 

  81. Greene LM, Carr M, Keeley NO, Lawler M, Meegan MJ, Zisterer DM. BubR1 is required for the mitotic block induced by combretastatin-A4 and a novel cis-restricted β-lactam analogue in human cancer cells. Int J Mol Med. 2011;27:715–23. https://doi.org/10.3892/ijmm.2011.633

    Article  CAS  PubMed  Google Scholar 

  82. Carta A, Briguglio I, Piras S, Boatto G, La Colla P, Loddo R. et al. 3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: A novel class of potent tubulin inhibitors. Eur J Med Chem. 2011;46:4151–67. https://doi.org/10.1016/j.ejmech.2011.06.018.

    Article  CAS  PubMed  Google Scholar 

  83. Romagnoli R, Baraldi PG, Lopez Cara C, Kimatrai Salvador M, Bortolozzi R, Basso G, et al. One-pot synthesis and biological evaluation of 2-pyrrolidinyl-4-amino-5- (3′,4′,5′-trimethoxybenzoyl)thiazole: a unique, highly active antimicrotubule agent. Eur J Med Chem. 2011;46:6015–24. https://doi.org/10.1016/j.ejmech.2011.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Abdel-Aziz M, Aly OM, Khan SS, Mukherjee K, Bane S. Synthesis, cytotoxic properties and tubulin polymerization inhibitory activity of novel 2-pyrazoline derivatives. Arch der Pharmazie. 2012;345:535–48. https://doi.org/10.1002/ardp.201100471

    Article  CAS  Google Scholar 

  85. Liu T, Dong X, Xue N, Wu R, He Q, Yang B, et al. Synthesis and biological evaluation of 3,4-diaryl-5-aminoisoxazole derivatives. Bioorg Med Chem. 2009;17:6279–85. https://doi.org/10.1016/j.bmc.2009.07.040

    Article  CAS  PubMed  Google Scholar 

  86. Lo YH, Lin YT, Liu YP, Duh TH, Lu PJ, Wu MJ. Design, synthesis, biological evaluation and molecular modeling studies of 1-aryl-6-(3,4,5-trimethoxyphenyl)-3(Z)-hexen-1,5-diynes as a new class of potent antitumor agents. Eur J Med Chem. 2013;62:526–33. https://doi.org/10.1016/j.ejmech.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  87. Liu YQ, Li XJ, Zhao CY, Nan X, Tian J, Morris-Natschke SL, et al. Synthesis and mechanistic studies of novel spin-labeled combretastatin derivatives as potential antineoplastic agents. Bioorg Med Chem. 2013;21:1248–56. https://doi.org/10.1016/j.bmc.2012.12.046

    Article  CAS  PubMed  Google Scholar 

  88. Liu ZY, Wang YM, Han YX, Liu L, Jin J, Yi H, et al. Synthesis and antitumor activity of novel 3,4-diaryl squaric acid analogs. Eur J Med Chem. 2013;65:187–94. https://doi.org/10.1016/j.ejmech.2013.04.046

    Article  CAS  PubMed  Google Scholar 

  89. Zhu H, Zhang J, Xue N, Hu Y, Yang B, He Q. Novel combretastatin A-4 derivative XN0502 induces cell cycle arrest and apoptosis in A549 cells. Investig N Drugs. 2010;28:493–501. https://doi.org/10.1007/s10637-010-9424-4

    Article  CAS  Google Scholar 

  90. Di Wang W, Xu XM, Chen Y, Jiang P, Dong CZ, Wang Q. Apoptosis of Human Burkitt’s lymphoma cells induced by 2-N,N- Diethylaminocarbonyloxymethyl-1-diphenylmethyl-4-(3,4,5-trimethoxybenzoyl) piperazine hydrochloride (PMS-1077). Arch Pharmacal Res. 2009;32:1727–36. https://doi.org/10.1007/s12272-009-2210-1

    Article  CAS  Google Scholar 

  91. Metwally K, Khalil A, Sallam A, Pratsinis H, Kletsas D, El Sayed K. Structure-activity relationship investigation of methoxy substitution on anticancer pyrimido[4,5-c]quinolin-1(2H)-ones. Med Chem Res. 2013;22:4481–91. https://doi.org/10.1007/s00044-012-0428-9

    Article  CAS  Google Scholar 

  92. Greene LM, O’Boyle NM, Nolan DP, Meegan MJ, Zisterer DM. The vascular targeting agent Combretastatin-A4 directly induces autophagy in adenocarcinoma-derived colon cancer cells. Biochem Pharmacol. 2012;84:612–24. https://doi.org/10.1016/j.bcp.2012.06.005

    Article  CAS  PubMed  Google Scholar 

  93. Parihar S, Gupta A, Chaturvedi AK, Agarwal J, Luqman S, Changkija B, et al. Gallic acid based steroidal phenstatin analogues for selective targeting of breast cancer cells through inhibiting tubulin polymerization. Steroids. 2012;77:878–86. https://doi.org/10.1016/j.steroids.2012.03.012

    Article  CAS  PubMed  Google Scholar 

  94. Rasolofonjatovo E, Provot O, Hamze A, Rodrigo J, Bignon J, Wdzieczak-Bakala J, et al. Design, synthesis and anticancer properties of 5-arylbenzoxepins as conformationally restricted isocombretastatin A-4 analogs. Eur J Med Chem. 2013;62:28–39. https://doi.org/10.1016/j.ejmech.2012.12.042

    Article  CAS  PubMed  Google Scholar 

  95. Liu J, Zheng C-H, Ren X-H, Zhou F, Li W, Zhu J, et al. Synthesis and biological evaluation of 1-benzylidene-3,4-dihydronaphthalen-2-one as a new class of microtubule-targeting agents. J Med Chem. 2012;55:5720–33. https://doi.org/10.1021/jm300596s

    Article  CAS  PubMed  Google Scholar 

  96. Theeramunkong S, Caldarelli A, Massarotti A, Aprile S, Caprioglio D, Zaninetti R, et al. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J Med Chem. 2011;54:4977–86. https://doi.org/10.1021/jm200555r

    Article  CAS  PubMed  Google Scholar 

  97. Mesenzani O, Massarotti A, Giustiniano M, Pirali T, Bevilacqua V, Caldarelli A, et al. Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: synthesis and biological evaluation. Bioorg Med Chem Lett. 2011;21:764–68. https://doi.org/10.1016/j.bmcl.2010.11.113

    Article  CAS  PubMed  Google Scholar 

  98. Massarotti A, Theeramunkong S, Mesenzani O, Caldarelli A, Genazzani AA, Tron GC. Identification of novel antitubulin agents by using a virtual screening approach based on a 7-point pharmacophore model of the tubulin colchi-site. Chem Biol Drug Des. 2011;78:913–22. https://doi.org/10.1111/j.1747-0285.2011.01245.x

    Article  CAS  PubMed  Google Scholar 

  99. Liu T, Cui R, Chen J, Zhang J, He Q, Yang B, et al. 4,5-diaryl-3-aminopyrazole derivatives as analogs of combretastatin A-4: Synthesis and biological evaluation. Arch der Pharmazie. 2011;344:279–86. https://doi.org/10.1002/ardp.201000069

    Article  CAS  Google Scholar 

  100. Liu Y, Wei D, Zhao Y, Cheng W, Lu Y, Ma Y, et al. Synthesis and biological evaluation of a series of podophyllotoxins derivatives as a class of potent antitubulin agents. Bioorg Med Chem. 2012;20:6285–95. https://doi.org/10.1016/j.bmc.2012.09.009

    Article  CAS  PubMed  Google Scholar 

  101. O’Boyle NM, Pollock JK, Carr M, Knox AJS, Nathwani SM, Wang S, et al. β-Lactam estrogen receptor antagonists and a dual-targeting estrogen receptor/tubulin ligand. J Med Chem. 2014;57:9370–82. https://doi.org/10.1021/jm500670d

    Article  CAS  PubMed  Google Scholar 

  102. Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Lopez-Cara C, Schiaffino Ortega S, et al. Design, synthesis, in vitro, and in vivo anticancer and antiangiogenic activity of novel 3-arylaminobenzofuran derivatives targeting the colchicine site on tubulin. J Med Chem. 2015;58:3209–22. https://doi.org/10.1021/acs.jmedchem.5b00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamal A, Reddy VS, Shaik AB, Kumar GB, Vishnuvardhan MVPS, Polepalli S, et al. Synthesis of (Z)-(arylamino)-pyrazolyl/isoxazolyl-2-propenones as tubulin targeting anticancer agents and apoptotic inducers. Org Biomol Chem. 2015;13:3416–31. https://doi.org/10.1039/c4ob02449d

    Article  CAS  PubMed  Google Scholar 

  104. Reddy MVR, Akula B, Cosenza SC, Lee CM, Mallireddigari MR, Pallela VR. et al. (Z)-1-Aryl-3-arylamino-2-propen-1-ones, highly active stimulators of tubulin polymerization: Synthesis, structure-activity relationship (SAR), tubulin polymerization, and cell growth inhibition studies. J Med Chem. 2012;55:5154–87. https://doi.org/10.1021/jm300176j.

    Article  CAS  Google Scholar 

  105. La Regina G, Bai R, Coluccia A, Famiglini V, Pelliccia S, Passacantilli S, et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J Med Chem. 2014;57:6531–52.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhao D-G, Chen J, Du Y-R, Ma Y-Y, Chen Y-X, Gao K, et al. Synthesis and structure–activity relationships of N -Methyl-5,6,7-trimethoxylindoles as novel antimitotic and vascular disrupting agents. J Med Chem. 2013;56:1467–77. https://doi.org/10.1021/jm3014663

    Article  CAS  PubMed  Google Scholar 

  107. Xiao M, Ahn S, Wang J, Chen J, Miller DD, Dalton JT, et al. Discovery of 4-aryl-2-benzoyl-imidazoles as tubulin polymerization inhibitor with potent antiproliferative properties. J Med Chem. 2013;56:3318–29. https://doi.org/10.1021/jm4001117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Romagnoli R, Baraldi PG, Lopez-Cara C, Preti D, Aghazadeh Tabrizi M, Balzarini J, et al. ConCise synthesis and biological evaluation of 2-aroyl-5-amino benzo[b]thiophene derivatives as a novel class of potent antimitotic agents. J Med Chem. 2013;56:9296–309. https://doi.org/10.1021/jm4013938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Álvarez R, Puebla P, Díaz JF, Bento AC, García-Navas R, De La Iglesia-Vicente J, et al. Endowing indole-based tubulin inhibitors with an anchor for derivatization: Highly potent 3-substituted indolephenstatins and indoleisocombretastatins. J Med Chem. 2013;56:2813–27. https://doi.org/10.1021/jm3015603

    Article  CAS  PubMed  Google Scholar 

  110. Romagnoli R, Baraldi PG, Kimatrai Salvador M, Preti D, Aghazadeh Tabrizi M, Bassetto M. et al. Synthesis and biological evaluation of 2-(alkoxycarbonyl)-3-anilinobenzo[b]thiophenes and thieno[2,3- b]pyridines as new potent anticancer agents. J Med Chem. 2013;56:2606–18. https://doi.org/10.1021/jm400043d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kumar AS, Reddy MA, Jain N, Kishor C, Murthy TR, Ramesh D, et al. Design and synthesis of biaryl aryl stilbenes/ethylenes as antimicrotubule agents. Eur J Med Chem. 2013;60:305–24. https://doi.org/10.1016/j.ejmech.2012.12.008

    Article  CAS  PubMed  Google Scholar 

  112. Nguyen TTB, Lomberget T, Tran NC, Barret R. Synthesis of (Z) isomers of benzoheterocyclic derivatives of combretastatin A-4: A comparative study of several methods. Tetrahedron. 2013;69:2336–47. https://doi.org/10.1016/j.tet.2013.01.005

    Article  CAS  Google Scholar 

  113. Sun Y, Pandit B, Chettiar SN, Etter JP, Lewis A, Johnsamuel J, et al. Design, synthesis and biological studies of novel tubulin inhibitors. Bioorg Med Chem Lett. 2013;23:4465–68. https://doi.org/10.1016/j.bmcl.2013.04.078

    Article  CAS  PubMed  Google Scholar 

  114. Li N, Guan Q, Hong Y, Zhang B, Li M, Li X, et al. Discovery of 6-aryl-2-(3,4,5-trimethoxyphenyl)thiazole[3,2-b][1,2,4]triazoles as potent tubulin polymerization inhibitors. Eur J Med Chem. 2023;256:115402. https://doi.org/10.1016/j.ejmech.2023.115402

    Article  CAS  PubMed  Google Scholar 

  115. Qi Z-Y, Hao S-Y, Tian H-Z, Bian H-L, Hui L, Chen S-W. Synthesis and biological evaluation of 1-(benzofuran-3-yl)-4-(3,4,5-trimethoxyphenyl)-1H-1,2,3-triazole derivatives as tubulin polymerization inhibitors. Bioorg Chem. 2020;94:103392 https://doi.org/10.1016/j.bioorg.2019.103392

    Article  CAS  PubMed  Google Scholar 

  116. Tian C, Chen X, Zhang Z, Wang X, Liu J. Design and synthesis of (2-(phenylamino)thieno[3,2-d]pyrimidin-4-yl)(3,4,5-trimethoxyphenyl)methanone analogues as potent anti-tubulin polymerization agents. Eur J Med Chem. 2019;183:111679 https://doi.org/10.1016/j.ejmech.2019.111679

    Article  CAS  PubMed  Google Scholar 

  117. Shawky AM, Ibrahim NA, Abdalla AN, Abourehab MAS, Gouda AM. Novel pyrrolizines bearing 3,4,5-trimethoxyphenyl moiety: design, synthesis, molecular docking, and biological evaluation as potential multi-target cytotoxic agents. J Enzym Inhibition Med Chem. 2021;36:1312–32. https://doi.org/10.1080/14756366.2021.1937618

    Article  CAS  Google Scholar 

  118. Jiang J, Zhang Q, Guo J, Fang S, Zhou R, Zhu J, et al. Synthesis and biological evaluation of 7-methoxy-1-(3,4,5-trimethoxyphenyl)-4,5-dihydro-2H-benzo[e]indazoles as new colchicine site inhibitors. Bioorg Med Chem Lett. 2019;29:2632–34. https://doi.org/10.1016/j.bmcl.2019.07.042

    Article  CAS  PubMed  Google Scholar 

  119. Kamal A, Mallareddy A, Suresh P, Shaik TB, Lakshma Nayak V, Kishor C, et al. Synthesis of chalcone-amidobenzothiazole conjugates as antimitotic and apoptotic inducing agents. Bioorg Med Chem. 2012;20:3480–92. https://doi.org/10.1016/j.bmc.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  120. Romagnoli R, Baraldi PG, Cruz-Lopez O, Tolomeo M, Di Cristina A, Pipitone RM, et al. Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero) arylethynyl thiophene derivatives. Bioorg Med Chem Lett. 2011;21:2746–51. https://doi.org/10.1016/j.bmcl.2010.11.083

    Article  CAS  PubMed  Google Scholar 

  121. Hao S-Y, Qi Z-Y, Wang S, Wang X-R, Chen S-W. Synthesis and bioevaluation of N-(3,4,5-trimethoxyphenyl)-1H-pyrazolo[3,4-b]pyridin-3-amines as tubulin polymerization inhibitors with anti-angiogenic effects. Bioorg Med Chem. 2021;31:115985 https://doi.org/10.1016/j.bmc.2020.115985.

    Article  CAS  PubMed  Google Scholar 

  122. Romagnoli R, Baraldi PG, Sarkar T, Carrion MD, Cruz-Lopez O, Lopez Cara C, et al. Synthesis and biological evaluation of 2-(3′,4′,5′-trimethoxybenzoyl)-3-N,N-dimethylamino benzo[b]furan derivatives as inhibitors of tubulin polymerization. Bioorg Med Chem. 2008;16:8419–26. https://doi.org/10.1016/j.bmc.2008.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Álvarez C, Álvarez R, Corchete P, López JL, Pérez-Melero C, Peláez R, et al. Diarylmethyloxime and hydrazone derivatives with 5-indolyl moieties as potent inhibitors of tubulin polymerization. Bioorg Med Chem. 2008;16:5952–61. https://doi.org/10.1016/j.bmc.2008.04.054

    Article  CAS  PubMed  Google Scholar 

  124. Álvarez C, Álvarez R, Corchete P, Pérez-Melero C, Peláez R, Medarde M. Naphthylphenstatins as tubulin ligands: synthesis and biological evaluation. Bioorg Med Chem. 2008;16:8999–9008. https://doi.org/10.1016/j.bmc.2008.08.040

    Article  CAS  PubMed  Google Scholar 

  125. El-Damasy AK, Jin H, Sabry MA, Kim HJ, Alanazi MM, Seo SH, et al. Design and synthesis of new 4-(3,4,5-trimethoxyphenyl)thiazole–pyrimidine derivatives as potential antiproliferative agents. Medicina. 2023;59:1076. https://doi.org/10.3390/medicina59061076

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mur Blanch N, Chabot GG, Quentin L, Scherman D, Bourg S, Dauzonne D. In vitro and in vivo biological evaluation of new 4,5-disubstituted 1,2,3-triazoles as cis-constrained analogs of combretastatin A4. Eur J Med Chem. 2012;54:22–32. https://doi.org/10.1016/j.ejmech.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  127. Prakasham AP, Saxena AK, Luqman S, Chanda D, Kaur T, Gupta A, et al. Synthesis and anticancer activity of 2-benzylidene indanones through inhibiting tubulin polymerization. Bioorg Med Chem. 2012;20:3049–57. https://doi.org/10.1016/j.bmc.2012.02.057

    Article  CAS  PubMed  Google Scholar 

  128. Romagnoli R, Baraldi PG, Salvador MK, Prencipe F, Bertolasi V, Cancellieri M, et al. Synthesis, Antimitotic and Antivascular Activity of 1-(3′,4′,5′-Trimethoxybenzoyl)-3-arylamino-5-amino-1,2,4-triazoles. J Med Chem. 2014;57:6795–808. https://doi.org/10.1021/jm5008193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lai MJ, Chang JY, Lee HY, Kuo CC, Lin MH, Hsieh HP, et al. Synthesis and biological evaluation of 1-(4′-Indolyl and 6′-Quinolinyl) indoles as a new class of potent anticancer agents. Eur J Med Chem. 2011;46:3623–9. https://doi.org/10.1016/j.ejmech.2011.04.065

    Article  CAS  PubMed  Google Scholar 

  130. Qi H, Zuo DY, Bai ZS, Xu JW, Li ZQ, Shen QR, et al. COH-203, a novel microtubule inhibitor, exhibits potent anti-tumor activity via p53-dependent senescence in hepatocellular carcinoma. Biochem Biophys Res Commun. 2014;455:262–8. https://doi.org/10.1016/j.bbrc.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  131. Wu R, Ding W, Liu T, Zhu H, Hu Y, Yang B, et al. XN05, a novel synthesized microtubule inhibitor, exhibits potent activity against human carcinoma cells in vitro. Cancer Lett. 2009;285:13–22. https://doi.org/10.1016/j.canlet.2009.04.042

    Article  CAS  PubMed  Google Scholar 

  132. Ty N, Kaffy J, Arrault A, Thoret S, Pontikis R, Dubois J, et al. Synthesis and biological evaluation of cis-locked vinylogous combretastatin-A4 analogues: Derivatives with a cyclopropyl-vinyl or a cyclopropyl-amide bridge. Bioorg Med Chem Lett. 2009;19:1318–22. https://doi.org/10.1016/j.bmcl.2009.01.062

    Article  CAS  PubMed  Google Scholar 

  133. Ren A, Wei W, Liang Z, Zhou M, Liang T, Zang N. Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization. RSC Med Chem. 2023;14:113–21. https://doi.org/10.1039/D2MD00340F

    Article  CAS  PubMed  Google Scholar 

  134. Penthala NR, Zong H, Ketkar A, Madadi NR, Janganati V, Eoff RL, et al. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents. Eur J Med Chem. 2015;92:212–20. https://doi.org/10.1016/j.ejmech.2014.12.050

    Article  CAS  PubMed  Google Scholar 

  135. Galli U, Travelli C, Aprile S, Arrigoni E, Torretta S, Grosa G, et al. Design, synthesis, and biological evaluation of combretabenzodiazepines: A novel class of anti-tubulin agents. J Med Chem. 2015;58:1345–1357. https://doi.org/10.1021/jm5016389

    Article  CAS  PubMed  Google Scholar 

  136. Lu Y, Chen J, Wang J, Li CM, Ahn S, Barrett CM, et al. Design, synthesis, and biological evaluation of stable colchicine binding site tubulin inhibitors as potential anticancer agents. J Med Chem. 2014;57:7355–66. https://doi.org/10.1021/jm500764v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ansari M, Shokrzadeh M, Karima S, Rajaei S, Fallah M, Ghassemi-Barghi N. et al. New thiazole-2(3H)-thiones containing 4-(3,4,5-trimethoxyphenyl) moiety as anticancer agents. Eur J Med Chem. 2020;185:111784 https://doi.org/10.1016/j.ejmech.2019.111784

    Article  CAS  PubMed  Google Scholar 

  138. Liu R, Huang M, Zhang S, Li L, Li M, Sun J. et al. Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors. Eur J Med Chem. 2021;226:113826 https://doi.org/10.1016/j.ejmech.2021.113826

    Article  CAS  PubMed  Google Scholar 

  139. Ameri A, Khodarahmi G, Forootanfar H, Hassanzadeh F, Hakimelahi G. Hybrid pharmacophore design, molecular docking, synthesis, and biological evaluation of novel aldimine‐type schiff base derivatives as tubulin polymerization inhibitor. Chem Biodivers. 2018;15:e1700518.

  140. Ameri A, Khodarahmi G, Hassanzade F, Hakimelahi G, Forootanfar H. Design, synthesis and evaluation of some biological activities of novel 3-chloro-1, 4-diarylazetidin-2-one derivatives. (2017). PhD Thesis, p25-140. http://elib.mui.ac.ir/site/catalogue/111303

  141. Ameri A, Khodarahmi G, Hassanzadeh F, Forootanfar H, Hakimelahi G. Novel Aldimine-Type Schiff Bases of 4-Amino-5-[(3,4,5-trimethoxyphenyl)methyl]-1,2,4-triazole-3-thione/thiol: Docking Study, Synthesis, Biological Evaluation, and Anti-Tubulin Activity. 2016;349:662–81.

  142. Kamal A, Faazil S, Ramaiah MJ, Ashraf M, Balakrishna M, Pushpavalli SNCVL, et al. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells. Bioorg Med Chem Lett. 2013;23:5733–9. https://doi.org/10.1016/j.bmcl.2013.07.068

    Article  CAS  PubMed  Google Scholar 

  143. O’Boyle NM, Greene LM, Keely NO, Wang S, Cotter TS, Zisterer DM, et al. Synthesis and biochemical activities of antiproliferative amino acid and phosphate derivatives of microtubule-disrupting β-lactam combretastatins. Eur J Med Chem. 2013;62:705–21. https://doi.org/10.1016/j.ejmech.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  144. Parihar S, Kumar A, Chaturvedi AK, Sachan NK, Luqman S, Changkija B, et al. Synthesis of combretastatin A4 analogues on steroidal framework and their anti-breast cancer activity. J Steroid Biochem Mol Biol. 2013;137:332–44. https://doi.org/10.1016/j.jsbmb.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  145. Androutsopoulos VP, Ruparelia KC, Papakyriakou A, Filippakis H, Tsatsakis AM, Spandidos DA. Anticancer effects of the metabolic products of the resveratrol analogue, DMU-212: Structural requirements for potency. Eur J Med Chem. 2011;46:2586–95. https://doi.org/10.1016/j.ejmech.2011.03.049

    Article  CAS  PubMed  Google Scholar 

  146. Zheng S, Zhong Q, Mottamal M, Zhang Q, Zhang C, Lemelle E, et al. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J Med Chem. 2014;57:3369–81. https://doi.org/10.1021/jm500002k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kovar SE, Fourman C, Kinstedt C, Williams B, Morris C, Cho K. et al. Chalcones bearing a 3,4,5-trimethoxyphenyl motif are capable of selectively inhibiting oncogenic K-Ras signaling. Bioorg Med Chem Lett. 2020;30:127144 https://doi.org/10.1016/j.bmcl.2020.127144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang B, Duan D, Ge C, Yao J, Liu Y, Li X, et al. Synthesis of xanthohumol analogues and discovery of potent thioredoxin reductase inhibitor as potential anticancer agent. J Med Chem. 2015;58:1795–805. https://doi.org/10.1021/jm5016507

    Article  CAS  PubMed  Google Scholar 

  149. Meshram GA, Vala VA. Synthesis, characterization, and antimicrobial activity of benzimidazole-derived chalcones containing 1,3,4-oxadiazole moiety. Chem Heterocycl Compd. 2015;51:44–50. https://doi.org/10.1007/s10593-015-1653-1

    Article  CAS  Google Scholar 

  150. Bharti SK, Nath G, Tilak R, Singh SK. Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur J Medicinal Chem. 2010;45:651–60. https://doi.org/10.1016/j.ejmech.2009.11.008

    Article  CAS  Google Scholar 

  151. Saeed A, Mumtaz A. Novel isochroman-triazoles and thiadiazole hybrids: design, synthesis and antimicrobial activity. J Saudi Chem Soc. 2017;21:186–92. https://doi.org/10.1016/j.jscs.2015.04.004

    Article  CAS  Google Scholar 

  152. Hatnapure GD, Keche AP, Rodge AH, Tale RH, Birajdar SS, Pawar MJ, et al. Synthesis and biological evaluation of novel 2′,4′,5′-trimethoxyflavonol derivatives as anti-inflammatory and antimicrobial agents. Med Chem Res. 2014;23:461–70. https://doi.org/10.1007/s00044-013-0651-z

    Article  CAS  Google Scholar 

  153. Ahmed N, Konduru NK, Owais M. Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. Arab J Chem. 2019;12:1879–94. https://doi.org/10.1016/j.arabjc.2014.12.008

    Article  CAS  Google Scholar 

  154. Panda SS, Malik R, Chand M, Jain SC. Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H-chromen-2-one derivatives. Med Chem Res. 2012;21:3750–6. https://doi.org/10.1007/s00044-011-9881-0

    Article  CAS  Google Scholar 

  155. Dhahir SA, Aziz NM, Bakir SR. Synthesis, characterization and antimicrobial studies of complexes of some metal ions with 2- [2-amino-5- bromo-phenol]. Int J Basic Appl Sci. 2012;12:58–67.

    Google Scholar 

  156. Li J, Liang ZP, Kong FT, Zhang H. Synthesis, crystal structure and antibacterial activity of (2E,3E)-N-1,N-2-Bis(2,3,4-trimethoxy-6-methylbenzylidene)ethane-1,2-diam ine. Chinese J Struct Chem. 2009;28:577–9.

  157. Saxena A, Mukhopadhyay AK, Nandi SP. Helicobacter pylori: Perturbation and restoration of gut microbiome. J Biosci. 2020;45:110 https://doi.org/10.1007/s12038-020-00078-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chang CS, Liu JF, Lin HJ, Der Lin C, Tang CH, Lu DY, et al. Synthesis and bioevaluation of novel 3,4,5-trimethoxybenzylbenzimidazole derivatives that inhibit Helicobacter pylori-induced pathogenesis in human gastric epithelial cells. Eur J Med Chem. 2012;48:244–54. https://doi.org/10.1016/j.ejmech.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  159. He D, Jian W, Liu X, Shen H, Song S. Synthesis, biological evaluation, and structure-activity relationship study of novel stilbene derivatives as potential fungicidal agents. J Agric Food Chem. 2015;63:1370–7. https://doi.org/10.1021/jf5052893

    Article  CAS  PubMed  Google Scholar 

  160. Chen CJ, Song BA, Yang S, Xu GF, Bhadury PS, Jin LH, et al. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg Med Chem. 2007;15:3981–9. https://doi.org/10.1016/j.bmc.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  161. Liu F, Luo XQ, Song BA, Bhadury PS, Yang S, Jin LH, et al. Synthesis and antifungal activity of novel sulfoxide derivatives containing trimethoxyphenyl substituted 1,3,4-thiadiazole and 1,3,4-oxadiazole moiety. Bioorg Med Chem. 2008;16:3632–40. https://doi.org/10.1016/j.bmc.2008.02.006

    Article  CAS  PubMed  Google Scholar 

  162. Chung ST, Huang YT, Hsiung HY, Huang WH, Yao CW, Lee AR. Novel daidzein analogs and their in vitro anti-influenza activities. Chem Biodivers. 2015;12:685–96. https://doi.org/10.1002/cbdv.201400337

    Article  CAS  PubMed  Google Scholar 

  163. Hussain H, Al-Harrasi A, Al-Rawahi A, Green IR, Gibbons S. Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chem Rev. 2014;114:10369–428. https://doi.org/10.1021/cr400552x

    Article  CAS  PubMed  Google Scholar 

  164. Sharma M, Chauhan K, Shivahare R, Vishwakarma P, Suthar MK, Sharma A, et al. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J Med Chem. 2013;56:4374–92. https://doi.org/10.1021/jm400053v

    Article  CAS  PubMed  Google Scholar 

  165. Sharma N, Mohanakrishnan D, Shard A, Sharma A, Saima, Sinha AK, Sahal D. Stilbene-chalcone hybrids: Design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J Med Chem. 2012;55:297–311. https://doi.org/10.1021/jm201216y

    Article  CAS  PubMed  Google Scholar 

  166. Sharma RK, Younis Y, Mugumbate G, Njoroge M, Gut J, Rosenthal PJ, et al. Synthesis and structure-activity-relationship studies of thiazolidinediones as antiplasmodial inhibitors of the Plasmodium falciparum cysteine protease falcipain-2. Eur J Med Chem. 2015;90:507–18. https://doi.org/10.1016/j.ejmech.2014.11.061

    Article  CAS  PubMed  Google Scholar 

  167. Verotta L, Dell’Agli M, Giolito A, Guerrini M, Cabalion P, Bosisio E. In vitro antiplasmodial activity of extracts of Tristaniopsis species and identification of the active constituents: Ellagic acid and 3,4,5-trimethoxyphenyl-(6′-O-galloyl)-O-β-D-glucopyranoside. J Nat Prod. 2001;64:603–7. https://doi.org/10.1021/np000306j

    Article  CAS  PubMed  Google Scholar 

  168. Gil A, Pabón A, Galiano S, Burguete A, Pérez-Silanes S, Deharo E, et al. Synthesis, biological evaluation and structure-activity relationships of new quinoxaline derivatives as anti-Plasmodium falciparum agents. Molecules. 2014;19:2166–80. https://doi.org/10.3390/molecules19022166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Nalawade S, Deshmukh V, Chaudhari S. Design, microwave assisted synthesis and pharmacological activities of substituted pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate derivatives. J Pharm Res. 2013;7:433–8.

    CAS  Google Scholar 

  170. Di Sun L, Wang F, Dai F, Wang YH, Lin D, Zhou B. Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochem Pharmacol. 2015;95:156–69. https://doi.org/10.1016/j.bcp.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  171. He J, Ma L, Wei Z, Zhu J, Peng F, Shao M, et al. Synthesis and biological evaluation of novel pyrazoline derivatives as potent anti-inflammatory agents. Bioorg Med Chem Lett. 2015;25:2429–33. https://doi.org/10.1016/j.bmcl.2015.03.087

    Article  CAS  PubMed  Google Scholar 

  172. Davydova MP, Sorokina IV, Tolstikova TG, Mamatyuk VI, Fadeev DS, Vasilevsky SF. Synthesis of new combretastatin A-4 analogues and study of their anti-inflammatory activity. Russian J Bioorg Chem. 2015;41:70–76. https://doi.org/10.1134/S1068162015010033

    Article  CAS  Google Scholar 

  173. Chen W, Ge X, Xu F, Zhang Y, Liu Z, Pan J, et al. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett. 2015;25:2998–3004. https://doi.org/10.1016/j.bmcl.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  174. Ye H, Wu W, Liu Z, Xie C, Tang M, Li S, et al. Bioactivity-guided isolation of anti-inflammation flavonoids from the stems of Millettia dielsiana Harms. Fitoterapia. 2014;95:154–9. https://doi.org/10.1016/j.fitote.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  175. Tozkoparan B, Aytaç SP, Gürsoy Ş, Aktay G. Design and synthesis of some thiazolotriazolyl esters as anti-inflammatory and analgesic agents. Med Chem Res. 2012;21:192–201. https://doi.org/10.1007/s00044-010-9508-x

    Article  CAS  Google Scholar 

  176. Bashir R, Ovais S, Yaseen S, Hamid H, Alam MS, Samim M, et al. Synthesis of some new 1,3,5-trisubstituted pyrazolines bearing benzene sulfonamide as anticancer and anti-inflammatory agents. Bioorg Med Chem Lett. 2011;21:4301–5. https://doi.org/10.1016/j.bmcl.2011.05.061

    Article  CAS  PubMed  Google Scholar 

  177. Chung S-T, Huang W-H, Huang C-K, Liu F-C, Huang R-Y, Wu C-C, et al. Synthesis and anti-inflammatory activities of 4H-chromene and chromeno[2,3-b]pyridine derivatives. Res Chem Intermed. 2016;42:1195–215. https://doi.org/10.1007/s11164-015-2081-7

    Article  CAS  Google Scholar 

  178. Neve JE, Wijesekera HP, Duffy S, Jenkins ID, Ripper JA, Teague SJ, et al. Euodenine A: a small-molecule agonist of human TLR4. J Med Chem. 2014;57:1252–75. https://doi.org/10.1021/jm401321v

    Article  CAS  PubMed  Google Scholar 

  179. Leong SW, Mohd Faudzi SM, Abas F, Mohd Aluwi MFF, Rullah K, Wai LK, et al. Synthesis and sar study of diarylpentanoid analogues as new anti-inflammatory agents. Molecules. 2014;19:16058–81. https://doi.org/10.3390/molecules191016058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Do Nascimento RF, De Sales IRP, De Oliveira Formiga R, Barbosa-Filho JM, Sobral MV, Tavares JF, et al. Activity of alkaloids on peptic ulcer: what’s new? Molecules. 2015;20:929–50. https://doi.org/10.3390/molecules20010929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kalavagunta PK, Pala R, Pathipati UR, Ravirala N. Identification of naphthol derivatives as novel antifeedants and insecticides. 1. J Agric Food Chem. 2014;62:6571–6. https://doi.org/10.1021/jf501705u

    Article  CAS  PubMed  Google Scholar 

  182. Liu YQ, Zhao YL, Yang L, Zhou XW, Feng G. Design, semisynthesis and insecticidal activity of novel podophyllotoxin derivatives against Brontispa longissima in vivo. Pestic Biochem Physiol. 2012;102:11–18. https://doi.org/10.1016/j.pestbp.2011.09.012

    Article  CAS  Google Scholar 

  183. Bezerra DP, Pessoa C, De Moraes MO, Saker-Neto N, Silveira ER, Costa-Lotufo LV. Overview of the therapeutic potential of piplartine (piperlongumine). Eur J Pharm Sci. 2013;48:453–63. https://doi.org/10.1016/j.ejps.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  184. Sangjun S, de Jong E, Nijmeijer S, Mutarapat T, Ruchirawat S, van den Berg M, et al. Induction of cell cycle arrest in human MCF-7 breast cancer cells by cis-stilbene derivatives related to VIOXX®. Toxicol Lett. 2009;186:115–22. https://doi.org/10.1016/j.toxlet.2009.01.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research project received financial backing from Kerman University of Medical Sciences under the project number 98000181, with ethical approval granted under code IR.KMU.REC.1398.158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alieh Ameri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langarizadeh, M.A., Ameri, A., Tavakoli, M.R. et al. The trimethoxyphenyl (TMP) functional group: a versatile pharmacophore. Med Chem Res 32, 2473–2500 (2023). https://doi.org/10.1007/s00044-023-03153-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03153-4

Keywords

Navigation