Skip to main content

Advertisement

Log in

Stable isotope applications in drug development and the elucidation of mechanisms of drug metabolism

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2023

This article has been updated

Abstract

Over the last 50 years, advances in the production of stable isotopes and mass spectrometry instrumentation have fueled elucidation of endogenous biochemical pathways and underpinned quantitative methodology in analytical chemistry, to name but two areas impacted. The topic covering the use of stable isotopes in pharmacological research is very broad, but the scope of the current manuscript is more restricted, and will focus on the application of 2H, 13C and 18O to elucidate mechanisms of drug metabolism since the early 1980s. In keeping with the commemorative nature of this collection of papers, many of the examples are drawn from the work of Dr. Thomas Baillie and his colleagues. In the latter part of this review, we will also consider the development of stable-label forms of drugs that have recently been approved or are under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Baillie TA. The use of stable isotopes in pharmacological research. Pharmacol Rev. 1981;33:81–132.

    CAS  PubMed  Google Scholar 

  2. Haskins NJ. The application of stable isotopes in biomedical research. Biomed Mass Spectrom. 1982;9:269–77. https://doi.org/10.1002/bms.1200090702.

    Article  CAS  PubMed  Google Scholar 

  3. Ortiz de Montellano P. Substrate oxidation. Cytochrome P450: Structure, Mechanism, and Biochemistry. New York: Springer; 2015.

  4. Guengerich FP. Kinetic Deuterium Isotope effects in Cytochrome P450 reactions. Methods Enzymol. 2017;596:217–38.https://doi.org/10.1016/bs.mie.2017.06.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K Johnson, H Le, SC Khojasteh, S Ma, and SK Chowdhury, Chapter 15 - The use of stable isotopes in drug metabolism studies,” in Identification and Quantification of Drugs, Metabolites, Drug Metabolizing Enzymes, and Transporters 2nd ed. Amsterdam: Elsevier, 2020, p. 439–460.

  6. Tomaszewski JE, Jerina DM, Daly JW. Deuterium isotope effects during formation of phenols by hepatic monoxygenases. Evidence for an alternative to arene oxide pathway. Biochemistry. 1975;14:2024–31. https://doi.org/10.1021/bi00680a033.

    Article  CAS  PubMed  Google Scholar 

  7. Tanabe M, Yasuda D, Tagg J, Mitoma C. Absence of isotope effects in the microsomal hydroxylation of acetanilide. Biochem Pharm. 1967;16:2230–3. https://doi.org/10.1016/0006-2952(67)90024-x.

    Article  CAS  PubMed  Google Scholar 

  8. Perel JM, Dayton PG, Tauriello CL, Brand L, Mark LC. Metabolic studies with deuterated phenobarbital. J Med Chem. 1967;10:371–4. https://doi.org/10.1021/jm00315a019.

    Article  CAS  PubMed  Google Scholar 

  9. Korzekwa KR, Swinney DC, Trager WF. Isotopically labeled chlorobenzenes as probes for the mechanism of cytochrome P-450 catalyzed aromatic hydroxylation. Biochemistry. 1989;28:9019–27. https://doi.org/10.1021/bi00449a010.

    Article  CAS  PubMed  Google Scholar 

  10. Hall LR, Hanzlik RP. Kinetic deuterium isotope effects on the N-demethylation of tertiary amides by cytochrome P-450. J Biol Chem. 1990;265:12349–55.

    Article  CAS  PubMed  Google Scholar 

  11. Guengerich FP. Kinetic deuterium isotope effects in cytochrome P450 oxidation reactions. J Label Compd Radiopharm. 2013;56:428–31. https://doi.org/10.1002/jlcr.3031.

    Article  CAS  Google Scholar 

  12. Wood AW, Swinney DC, Thomas PE, Ryan DE, Hall PF, Levin W. et al. Mechanism of androstenedione formation from testosterone and epitestosterone catalyzed by purified cytochrome P-450b. J Biol Chem. 1988;263:17322–32.

    Article  CAS  PubMed  Google Scholar 

  13. Narimatsu S, Matsubara K, Shimonishi T, Watanabe K, Yamamoto I, Yoshimura H. Enzymatic oxidation of 7-hydroxylated delta 8-tetrahydrocannabinol to 7-oxo-delta 8-tetrahydrocannabinol by hepatic microsomes of the guinea pig. Drug Metab Dispos. 1988;16:156–61.

    CAS  PubMed  Google Scholar 

  14. Zhang Z, Li Y, Stearns RA, Ortiz De Montellano PR, Baillie TA, Tang W. Cytochrome P450 3A4-mediated oxidative conversion of a cyano to an amide group in the metabolism of pinacidil. Biochemistry. 2002;41:2712–8. https://doi.org/10.1021/bi0119971.

    Article  CAS  PubMed  Google Scholar 

  15. Mak PJ, Denisov IG, Victoria D, Makris TM, Deng T, Sligar SG. et al. Resonance Raman detection of the hydroperoxo intermediate in the cytochrome P450 enzymatic cycle. J Am Chem Soc. 2007;129:6382–3. https://doi.org/10.1021/ja071426h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morrison RD, Blobaum AL, Byers FW, Santomango TS, Bridges TM, Stec D. et al. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5. Drug Metab Dispos. 2012;40:1834–45. https://doi.org/10.1124/dmd.112.046136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baillie TA, Halpin RA, Matuszewski BK, Geer LA, Chavez-Eng CM, Dean D. et al. Mechanistic studies on the reversible metabolism of rofecoxib to 5-hydroxyrofecoxib in the rat: evidence for transient ring opening of a substituted 2-furanone derivative using stable isotope-labeling techniques. Drug Metab Dispos. 2001;29:1614–28.

    CAS  PubMed  Google Scholar 

  18. Henne KR, Fisher MB, Iyer KR, Lang DH, Trager WF, Rettie AE. Active site characteristics of CYP4B1 probed with aromatic ligands. Biochemistry. 2001;40:8597–605. https://doi.org/10.1021/bi010395e.

    Article  CAS  PubMed  Google Scholar 

  19. Baer BR, Kunze KL, Rettie AE. Mechanism of formation of the ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies. Biochemistry. 2007;46:11598–605. https://doi.org/10.1021/bi701064b.

    Article  CAS  PubMed  Google Scholar 

  20. PRO De Montellano, Cytochrome P450: structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York, 2005.

  21. Rettie AE, Rettenmeier AW, Howald WN, Baillie TA. Cytochrome P-450–catalyzed formation of delta 4-VPA, a toxic metabolite of valproic acid. Science. 1987;235:890–3. https://doi.org/10.1126/science.3101178.

    Article  CAS  PubMed  Google Scholar 

  22. Rettie AE, Boberg M, Rettenmeier AW, Baillie TA. Cytochrome P-450-catalyzed desaturation of valproic acid in vitro. Species differences, induction effects, and mechanistic studies. J Biol Chem. 1988;263:13733–8.

    Article  CAS  PubMed  Google Scholar 

  23. Porubek DJ, Barnes H, Meier GP, Theodore LJ, Baillie TA. Enantiotopic differentiation during the biotransformation of valproic acid to the hepatotoxic olefin 2-n-propyl-4-pentenoic acid. Chem Res Toxicol. 1989;2:35–40. https://doi.org/10.1021/tx00007a006.

    Article  CAS  PubMed  Google Scholar 

  24. Kumar D, de Visser SP, Sharma PK, Cohen S, Shaik S. Radical clock substrates, their C-H hydroxylation mechanism by cytochrome P450, and other reactivity patterns: what does theory reveal about the clocks’ behavior?. J Am Chem Soc. 2004;126:1907–20. https://doi.org/10.1021/ja039439s.

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser DG, Vangiessen GJ, Reischer RJ, Wechter WJ. Isomeric inversion of ibuprofen (R)-enantiomer in humans. J Pharm Sci. 1976;65:269–73. https://doi.org/10.1002/jps.2600650222.

    Article  CAS  PubMed  Google Scholar 

  26. Knihinicki RD, Williams KM, Day RO. Chiral inversion of 2-arylpropionic acid non-steroidal anti-inflammatory drugs–1. In vitro studies of ibuprofen and flurbiprofen. Biochem Pharm. 1989;38:4389–95. https://doi.org/10.1016/0006-2952(89)90647-3.

    Article  CAS  PubMed  Google Scholar 

  27. Caldwell J, Hutt AJ, Fournel-Gigleux S. The metabolic chiral inversion and dispositional enantioselectivity of the 2-arylpropionic acids and their biological consequences. Biochem Pharm. 1988;37:105–14. https://doi.org/10.1016/0006-2952(88)90762-9.

    Article  CAS  PubMed  Google Scholar 

  28. Baillie TA, Adams WJ, Kaiser DG, Olanoff LS, Halstead GW, Harpootlian H. et al. Mechanistic studies of the metabolic chiral inversion of (R)-ibuprofen in humans. J Pharm Exp Ther. 1989;249:517–23.

    CAS  Google Scholar 

  29. de Bruin N, Ferreirós N, Schmidt M, Hofmann M, Angioni C, Geisslinger G. et al. Mutual inversion of flurbiprofen enantiomers in various rat and mouse strains. Chirality. 2018;30:632–41. https://doi.org/10.1002/chir.22826.

    Article  CAS  PubMed  Google Scholar 

  30. Elison C, Rapoport H, Laursen R, Elliott HW. Effect of deuteration of N–CH3 group on potency and enzymatic N-demethylation of morphine. Science. 1961;134:1078–9. https://doi.org/10.1126/science.134.3485.1078.

    Article  CAS  PubMed  Google Scholar 

  31. Claassen DO, Carroll B, De Boer LM, Wu E, Ayyagari R, Gandhi S. et al. Indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease. J Clin Mov Disord. 2017;4:3. https://doi.org/10.1186/s40734-017-0051-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hoy SM. Deucravacitinib: first approval. Drugs. 2022;82:1671–9. https://doi.org/10.1007/s40265-022-01796-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Martino RMC, Maxwell BD, Pirali T. Deuterium in drug discovery: progress, opportunities and challenges. Nat Rev Drug Discov. 2023;22:1–23. https://doi.org/10.1038/s41573-023-00703-8.

    Article  CAS  Google Scholar 

  34. Aprile S, Colombo G, Serafini M, Di Paola R, Pisati F, Bhela IP. et al. An unexpected Deuterium-induced metabolic switch in Doxophylline. ACS Med Chem Lett. 2022;13:1278–85. https://doi.org/10.1021/acsmedchemlett.2c00166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LeBrun LA, Xu F, Kroetz DL, Ortiz de Montellano PR. Covalent attachment of the heme prosthetic group in the CYP4F cytochrome P450 family. Biochemistry. 2002;41:5931–7. https://doi.org/10.1021/bi025527y.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan E. Rettie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Totah, R.A., Rettie, A.E. Stable isotope applications in drug development and the elucidation of mechanisms of drug metabolism. Med Chem Res 32, 2048–2057 (2023). https://doi.org/10.1007/s00044-023-03142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03142-7

Keywords

Navigation