Skip to main content
Log in

Synthesis of 2-amino-4H-chromenes catalyst-free via sequential Knoevenagel-Michael reaction and evaluation of biological activity in tumor cells

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

This work focuses on investigating solvents for the catalyst-free synthesis of 2-amino-4H-chromenes from salicylaldehydes and malononitrile through the Knoevenagel-Michael sequential reaction. The use of ethanol under reflux conditions resulted in the production of several 2-amino-4H-chromenes 5(a-g) with high isolated yields (75-93%) within a short reaction time (60-300 min). Notably, four new compounds, 2-amino-4H-chromenes 5(b,d,e,g), were synthesized for the first time. Virtual screening was performed on the most promising molecules (5b, 5e, and 5 f) against cell lines H-116 and K-562, with 5e demonstrating the most potential in antitumor activity. The in vitro assays validated the high potential exhibited by the 5e molecule, corroborating the in silico findings. Molecular docking analysis suggested a possible mechanism of action for the 5e molecule involving inhibition of the mutant T315l Abl protein. Mutations in the kinase domain of Bcr-Abl commonly lead to resistance to imatinib therapy in chronic myelogenous leukemia patients. This study represents the first investigation into the biological activity of this compound class, offering a promising starting point developing of new antitumor agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bakthadoss M, Sivakumar G. Highly stereo and chemoselective synthesis of tetra and pentacyclic frameworks using Solid-State Melt Reaction (SSMR). Tetrahedron Lett. 2014;55:1765–70. https://doi.org/10.1016/j.tetlet.2014.01.126

    Article  CAS  Google Scholar 

  2. Marcaccini S, Pepino R, Pozo MC, Basurto S, García-Valverde M, Torroba T One-pot synthesis of quinolin-2-(1H)-ones via tandem Ugi–Knoevenagel condensations. TetrahedronLetters, 2004; 35. https://doi.org/10.1002/chin.200435128.

  3. Sharma N, Sharma A, Shard A, Kumar R, Saima, Sinha AK. Pd-catalyzed orthogonal knoevenagel/perkin condensation–decarboxylation–heck/suzuki sequences: tandem transformations of benzaldehydes into hydroxy-functionalized antidiabetic stilbene–cinnamoyl hybrids and asymmetric distyrylbenzenes. Chem A Eur J. 2011;17:10350–6. https://doi.org/10.1002/chem.201101174

    Article  CAS  Google Scholar 

  4. Chen C, Yang H, Chen J, Zhang R, Guo L, Gan H, et al. One-pot tandem catalytic synthesis of α, β-unsaturated nitriles from alcohol with nitriles in aqueous phase. Catal Commun. 2014;47:49–53. https://doi.org/10.1016/j.catcom.2014.01.001

    Article  CAS  Google Scholar 

  5. Yang F, Wang Z, Wang H, Wang C, Wang L. An efficient condensation of substituted salicylaldehyde and malononitrile catalyzed by lipase under microwave irradiation. RSC Adv. 2015;5:57122–6. https://doi.org/10.1039/c5ra10565j

    Article  CAS  Google Scholar 

  6. Smuszkiewicz A, López-Sanz J, Sobczak I, Martín-Aranda RM, Ziolek M, Pérezmayoral E Tantalum vs Niobium MCF nanocatalysts in the green synthesis of chromene derivatives. Catal Today, 2019; 325. https://doi.org/10.1016/j.cattod.2018.06.038.

  7. Kulkarni MA, Pandit KS, Desai UV, Lad UP, Wadgaonkar PP. Diethylamine: A smart organocatalyst in eco-safe and diastereoselective synthesis of medicinally privileged 2-amino-4H-chromenes at ambient temperature. Comptes Rendus Chimie. 2013;16:689–95. https://doi.org/10.1016/j.crc.2013.02.016

    Article  CAS  Google Scholar 

  8. González-Rodal D, Palomino GT, Cabello CP. Pérez-Mayoral E. Amino-grafted Cu and Sc Metal-Organic Frameworks involved in the green synthesis of 2-amino-4H-chromenes. Mechanistic understanding. Microporous and Mesoporous Mat. 2021;323:111232 https://doi.org/10.1016/j.micromeso.2021.111232

    Article  CAS  Google Scholar 

  9. Curini M, Cravotto G, Epifano F, Giannone G. IL-13: A promising therapeutic target for bronchial asthma. Curr Med Chem. 2006;13:2291–8. https://doi.org/10.2174/092986706777935140

    Article  Google Scholar 

  10. O’kennedy R, Thornes RD Coumarins: Biology, Applications and Mode of Action. Wiley, 1997.

  11. Luo J, Xin T, Wang Y. A Peg bridged tertiary amine functionalized ionic liquid exhibiting thermo regulated reversible biphasic behavior with cyclohexane/isopropanol: synthesis and application in Knoevenagel condensation. New J Chem. 2013;37:269–73. https://doi.org/10.1039/C2NJ40890B

    Article  CAS  Google Scholar 

  12. Yadav S, Srivastava M, Rai P, Singh J, Prasad TK, Singh J. Visible light induced, catalyst free, convenient synthesis of chromene nucleus and its derivatives using water–ethanol mixture as a solvent. New J Chem. 2015;39:4556–61. https://doi.org/10.1039/c5nj00002e

    Article  CAS  Google Scholar 

  13. Costa M, Areias F, Abrunhosa L, Venâncio A, Proença F. The condensation of salicylaldehydes and malononitrile revisited: synthesis of new dimeric chromene derivatives. J Org Chem. 2008;73:1954–62. https://doi.org/10.1021/jo702552f

    Article  CAS  PubMed  Google Scholar 

  14. Bhat SI, Choudhury AR, Trivedi DR. Condensation of malononitrila with salicylaldehydes and o-aminobenzaldehydes revisited: solvent and catalyst free synthesis of 4H-chromenes and quinolines. RSC Adv. 2012;2:10556 https://doi.org/10.1039/C2RA21849F

    Article  CAS  Google Scholar 

  15. Ferreira JMGO, Resende-Filho JBM, Batista PK, Teotonio EES, Vale JA. Rapid and efficient uncatalyzed knoevenagel condensations from binary mixture of ethanol and water. J Brazilian Chem Soc. 2017;29:1382–7. https://doi.org/10.21577/0103-5053.20170240

    Article  CAS  Google Scholar 

  16. Ferreira JMGO, Silva GA, Coelho MC, Lima-Junior CG, Vale JA. Quick synthesis of isatin-derived Knoevenagel adducts using only eco-friendly solvent. Res Chem. 2021;3:100135 https://doi.org/10.1016/j.rechem.2021.100135

    Article  CAS  Google Scholar 

  17. Ramachary DB, Chowdari NS, Barbas CF. Organocatalytic asymmetric domino knoevenagel/diels–alder reactions: a bioorganic approach to the diastereospecific and enantioselective construction of highly substituted Spiro[5,5]undecane-1,5,9-triones. Angewandte Chemie. 2003;115:4365–9. https://doi.org/10.1002/ange.200351916

    Article  Google Scholar 

  18. Koch A, Tamez P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–99. https://doi.org/10.1016/j.jep.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  19. Kumar R, Pereira RS, Zanetti C, Minciacchi VR, Merten M, Meister M, et al. Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia. 2020;34:2087–101. https://doi.org/10.1038/s41375-020-0866-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45:321–34. https://doi.org/10.1182/blood-2016-08-736025. PMID: 163658

    Article  CAS  PubMed  Google Scholar 

  21. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood. 1994;83:1179–87. https://doi.org/10.1182/blood.V83.5.1179.1179. Erratum in: Blood 1994; 83:3835. PMID: 8118022

    Article  CAS  PubMed  Google Scholar 

  22. Modugno M, Casale E, Soncini C, Rosettani P, Colombo R, Lupi R, et al. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358. Cancer Res. 2007;67:7987–90. https://doi.org/10.1158/0008-5472.CAN-07-1825

    Article  CAS  PubMed  Google Scholar 

  23. ChemAxon. Marvin. Copyright Ⓒ 1998-2021, ChemAxon Ltd. All Rights Reserved. Copyright Ⓒ 1998–2021 p Copyright Ⓒ 1998-2021, ChemAxon Ltd. All rights reserved.

  24. ChemAxon. Standardizer Software. Chemaxon. Copyright Ⓒ 1998–2021 ChemAxon Ltd. All Rights Reserved. Copyright Ⓒ 1998–2021 p Copyright Ⓒ 1998-2021. ChemAxon Ltd.

  25. Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat Chem Biol. 2015;11:535 https://doi.org/10.1038/nchembio.1881

    Article  CAS  PubMed  Google Scholar 

  26. Fourches D, Muratov E, Tropsha A. Trust, but Verify II: A practical guide to chemogenomics data curation. J Chem Inf Model. 2016;56:1243–52. https://doi.org/10.1021/acs.jcim.6b00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. TALETE srl. Dragon - Software for Molecular Descriptor Calculation. v. 7.0. Kode Chemoinformatics, 2006. Copyright © 2013 Talete s.r.L. Kode informatics srl: Copyright © 2013 Talete s.r.l. p v. 7.0. Kode chemoinformatics, 2006.

  28. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, et al. KNIME - The Konstanz information miner. ACM SIGKDD Explor Newsl. 2009;11:26–31. https://doi.org/10.1145/1656274.1656280

    Article  Google Scholar 

  29. Fourches D, Pu D, Tassa C, Weissleder R, Shaw SY, Mumper RJ, et al. Quantitative nanostructure - activity relationship modeling. ACS Nano. 2010;4:5703–12. https://doi.org/10.1021/nn1013484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010. https://doi.org/10.1021/jm4004285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. BBA - Protein Struct. 1975;405:442–51. https://doi.org/10.1016/0005-2795(75)90109-9

    Article  CAS  Google Scholar 

  32. Scotti MT, Scotti L, Ishiki HM, Peron LM, De Rezende L, Do Amaral AT. Variable-selection approaches to generate QSAR models for a set of antichagasic semicarbazones and analogues. Chemom Intell Lab Syst. 2016;154:137–49. https://doi.org/10.1016/J.CHEMOLAB.2016.03.023

    Article  CAS  Google Scholar 

  33. Aptula AO, Roberts DW. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol. 2006;19:1097–105. https://doi.org/10.1021/tx0601004

    Article  CAS  PubMed  Google Scholar 

  34. Onodera K, Satou K, Hirota H. Evaluations of molecular docking programs for virtual screening. J Chem Inf Model. 2007;47:1609–18. https://doi.org/10.1021/ci7000378

    Article  CAS  PubMed  Google Scholar 

  35. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49:3315–21. https://doi.org/10.1021/jm051197e

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful National Institute of Science and Technology on Molecular Sciences (INCT-CiMol), Grant CNPq 406804/2022-2, the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 88887.824150/2023-00), and projeto de produtividade-PROPESQ/PRPG/UFPB (PVA13317-2020) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Alves Vale.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abrantes, P.G., de Abrantes, P.G., dos Santos Silva, D.A. et al. Synthesis of 2-amino-4H-chromenes catalyst-free via sequential Knoevenagel-Michael reaction and evaluation of biological activity in tumor cells. Med Chem Res 32, 2234–2244 (2023). https://doi.org/10.1007/s00044-023-03131-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03131-w

Keywords

Navigation