Skip to main content
Log in

Utilizing mechanistic organic chemistry training to study drug metabolism in preclinical drug discovery/development

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A fundamental knowledge of applied organic chemistry is an important weapon in the arsenal of drug metabolism scientists, particularly ones engaged in the design and/or the conduct of biotransformation studies or as drug hunters. Application of basic organic chemistry concepts (e.g., nucleophilicity/electrophilicity, bond polarity, electron flow, etc.) are important in elucidating structures of complex metabolites, arising from the metabolism of xenobiotics, and rationalizing the biotransformation mechanisms leading to their formation. An appreciation for the art of using mechanistic chemistry insights to study metabolic processes is usually gained during graduate training (MS and/or PhD) in academic laboratories specialized in the fields of chemical toxicology, medicinal chemistry, and/or enzymology. Select examples of academic research efforts, wherein mechanistic organic chemistry concepts were successfully applied to rationalize and establish structure-metabolism toxicology relationship trends for the oxidative metabolism of alicyclic amines are highlighted in this manuscript. The co-authors of this manuscript participated in some of this research work during their academic training, and went on toward a career in the pharmaceutical industry, where they applied their academic training toward studies on the metabolism of new drug substances, which also included efforts exploring the chemical basis for a toxicological consequence(s) in the preclinical discovery setting. The latter attribute is highlighted with a case study exploring metabolic activation pathways with a small molecule 5-HT2C agonist, which was genotoxic in the in vitro Ames assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kramlinger VM, Dalvie D, Heck CJS, Kalgutkar AS, O’Neill J, Su D, et al. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos. 2022;50:258–67. https://doi.org/10.1124/dmd.121.000658

    Article  CAS  PubMed  Google Scholar 

  2. MacCoss M, Baillie TA. Organic chemistry in drug discovery. Science. 2004;303:1810–3. https://doi.org/10.1126/science.1096800

    Article  CAS  PubMed  Google Scholar 

  3. Cerny MA, Kalgutkar AS, Obach RS, Sharma R, Spracklin DK, Walker GS. Effective Application of Metabolite Profiling in Drug Design and Discovery. J Med Chem. 2020;63:6387–406. https://doi.org/10.1021/acs.jmedchem.9b01840

    Article  CAS  PubMed  Google Scholar 

  4. Kalgutkar AS. Designing around Structural Alerts in Drug Discovery. J Med Chem. 2020;63:6276–302. https://doi.org/10.1021/acs.jmedchem.9b00917

    Article  CAS  PubMed  Google Scholar 

  5. Obach RS. Pharmacologically active drug metabolites: impact on drug discovery and pharmacotherapy. Pharm Rev. 2013;65:578–640. https://doi.org/10.1124/pr.111.005439

    Article  CAS  PubMed  Google Scholar 

  6. Penner N, Klunk LJ, Prakash C. Human radiolabeled mass balance studies: objectives, utilities and limitations. Biopharm Drug Dispos. 2009;30:185–203. https://doi.org/10.1002/bdd.661

    Article  CAS  PubMed  Google Scholar 

  7. Stepan AF, Kalgutkar, AS. Fundamentals of organic chemistry as applicable to the biotransformation of foreign compounds. In: Lee PW, Aizawa H, Gan LL, Prakash C, Zhong D, editors. Handbook of Metabolic Pathways of Xenobiotics. First Edition. New York: Wiley and Sons; 2014. p. 27–59

  8. Chiba K, Trevor A, Castagnoli N Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun. 1984;120:574–8. https://doi.org/10.1016/0006-291x(84)91293-2

    Article  CAS  PubMed  Google Scholar 

  9. Castagnoli N Jr., Chiba K, Trevor AJ. Potential bioactivation pathways for the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci. 1985;36:225–30. https://doi.org/10.1016/0024-3205(85)90063-3

    Article  CAS  PubMed  Google Scholar 

  10. Chiba K, Peterson LA, Castagnoli KP, Trevor AJ, Castagnoli N Jr. Studies on the molecular mechanism of bioactivation of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Drug Metab Dispos. 1985;13:342–7

    CAS  PubMed  Google Scholar 

  11. Peterson LA, Caldera PS, Trevor A, Chiba K, Castagnoli N Jr. Studies on the 1-methyl-4-phenyl-2,3-dihydropyridinium species 2,3-MPDP+, the monoamine oxidase catalyzed oxidation product of the nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Med Chem. 1985;28:1432–6. https://doi.org/10.1021/jm00148a010

    Article  CAS  PubMed  Google Scholar 

  12. Langston JW, Forno LS, Rebert CS, Irwin I. Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res. 1984;292:390–4. https://doi.org/10.1016/0006-8993(84)90777-7

    Article  CAS  PubMed  Google Scholar 

  13. Langston JW, Irwin I, Langston EB, Forno LS. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra. Neurosci Lett. 1984;48:87–92. https://doi.org/10.1016/0304-3940(84)90293-3

    Article  CAS  PubMed  Google Scholar 

  14. Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985;36:2503–8. https://doi.org/10.1016/0024-3205(85)90146-8

    Article  CAS  PubMed  Google Scholar 

  15. Dunigan CD, Shamoo AE. Identification of the major transport pathway for the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium. Neuroscience. 1996;75:37–41. https://doi.org/10.1016/0306-4522(96)00266-7

    Article  CAS  PubMed  Google Scholar 

  16. Sablin SO, Krueger MJ, Bachurin SO, Solyakov LS, Efange SM, Singer TP. Oxidation products arising from the action of monoamine oxidase B on 1-methyl-4-benzyl-1,2,3,6-tetrahydropyridine, a nonneurotoxic analogue of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem. 1994;62:2012–6. https://doi.org/10.1046/j.1471-4159.1994.62052012.x

    Article  CAS  PubMed  Google Scholar 

  17. Naiman N, Rollema H, Johnson E, Castagnoli N Jr. Studies on 4-benzyl-1-methyl-1,2,3,6-tetrahydropyridine, a nonneurotoxic analogue of the parkinsonian inducing agent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Chem Res Toxicol. 1990;3:133–8. https://doi.org/10.1021/tx00014a008

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Z, Dalvie D, Naiman N, Castagnoli K, Castagnoli N Jr. Design, synthesis, and biological evaluation of novel 4-substituted 1-methyl-1,2,3,6-tetrahydropyridine analogs of MPTP. J Med Chem. 1992;35:4473–8. https://doi.org/10.1021/jm00101a026

    Article  CAS  PubMed  Google Scholar 

  19. Kalgutkar AS, Castagnoli K, Hall A, Castagnoli N Jr. Novel 4-(aryloxy)tetrahydropyridine analogs of MPTP as monoamine oxidase A and B substrates. J Med Chem. 1994;37:944–9. https://doi.org/10.1021/jm00033a012

    Article  CAS  PubMed  Google Scholar 

  20. Dalvie Zhao Z D, Castagnoli N Jr. Characterization of an unexpected product from a monoamine oxidase B generated 2,3-dihydropyridinium species. J Org Chem. 1992;57:7321–4

    Article  Google Scholar 

  21. Flaherty P, Castagnoli K, Wang YX, Castagnoli N Jr. Synthesis and selective monoamine oxidase B-inhibiting properties of 1-methyl-1,2,3,6-tetrahydropyrid-4-yl carbamate derivatives: potential prodrugs of (R)- and (S)-nordeprenyl. J Med Chem. 1996;39:4756–61. https://doi.org/10.1021/jm960477e

    Article  CAS  PubMed  Google Scholar 

  22. Kamel A, Colizza K, Obach RS. In vitro metabolism of the 5-hydroxytryptamine1B receptor antagonist elzasonan. Xenobiotica. 2013;43:368–78. https://doi.org/10.3109/00498254.2012.723150

    Article  CAS  PubMed  Google Scholar 

  23. Kamel A, Obach RS, Colizza K, Wang W, O’Connell TN, Coelho RV Jr, et al. Metabolism, pharmacokinetics, and excretion of the 5-hydroxytryptamine1b receptor antagonist elzasonan in humans. Drug Metab Dispos. 2010;38:1984–99. https://doi.org/10.1124/dmd.110.034595

    Article  CAS  PubMed  Google Scholar 

  24. Naisbitt DJ, Williams DP, Pirmohamed M, Kitteringham NR, Park BK. Reactive metabolites and their role in drug reactions. Curr Opin Allergy Clin Immunol. 2001;1:317–25. https://doi.org/10.1097/01.all.0000011033.64625.5a

    Article  CAS  PubMed  Google Scholar 

  25. Baillie TA, Davis MR. Mass spectrometry in the analysis of glutathione conjugates. Biol Mass Spectrom. 1993;22:319–25. https://doi.org/10.1002/bms.1200220602

    Article  CAS  PubMed  Google Scholar 

  26. Johnson BM, van Breemen RB. In vitro formation of quinoid metabolites of the dietary supplement Cimicifuga racemosa (black cohosh). Chem Res Toxicol. 2003;16:838–46. https://doi.org/10.1021/tx020108n

    Article  CAS  PubMed  Google Scholar 

  27. Leung L, Kalgutkar AS, Obach RS. Metabolic activation in drug-induced liver injury. Drug Metab Rev. 2012;44:18–33. https://doi.org/10.3109/03602532.2011.605791

    Article  CAS  PubMed  Google Scholar 

  28. Potter WZ, Davis DC, Mitchell JR, Jollow DJ, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. 3. Cytochrome P-450-mediated covalent binding in vitro. J Pharm Exp Ther. 1973;187:203–10

    CAS  Google Scholar 

  29. Jollow DJ, Mitchell JR, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharm Exp Ther. 1973;187:195–202

    CAS  Google Scholar 

  30. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharm Exp Ther. 1973;187:185–94

    CAS  Google Scholar 

  31. Wang A, Zhao Q, Liu M, Wang Y, Zhao G, Li W, et al. In Vitro and In Vivo Metabolic Activation of Tolterodine Mediated by CYP3A. Chem Res Toxicol. 2023;36:479–91. https://doi.org/10.1021/acs.chemrestox.2c00389

    Article  CAS  PubMed  Google Scholar 

  32. Dahlin DC, Miwa GT, Lu AY, Nelson SD. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA. 1984;81:1327–31. https://doi.org/10.1073/pnas.81.5.1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen W, Koenigs LL, Thompson SJ, Peter RM, Rettie AE, Trager WF, et al. Oxidation of acetaminophen to its toxic quinone imine and nontoxic catechol metabolites by baculovirus-expressed and purified human cytochromes P450 2E1 and 2A6. Chem Res Toxicol. 1998;11:295–301. https://doi.org/10.1021/tx9701687

    Article  CAS  PubMed  Google Scholar 

  34. Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol. 2017;30:220–38. https://doi.org/10.1021/acs.chemrestox.6b00332

    Article  CAS  PubMed  Google Scholar 

  35. Gorrod JW, Aislaitner G. The metabolism of alicyclic amines to reactive iminium ion intermediates. Eur J Drug Metab Pharmacokinet. 1994;19:209–17. https://doi.org/10.1007/BF03188923

    Article  CAS  PubMed  Google Scholar 

  36. Argoti D, Liang L, Conteh A, Chen L, Bershas D, Yu CP, et al. Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol. 2005;18:1537–44. https://doi.org/10.1021/tx0501637

    Article  CAS  PubMed  Google Scholar 

  37. Murphy PJ. Enzymatic oxidation of nicotine to nicotine 1’(5’) iminium ion. A newly discovered intermediate in the metabolism of nicotine. J Biol Chem. 1973;248:2796–800

    Article  CAS  PubMed  Google Scholar 

  38. Ho B, Castagnoli N Jr. Trapping of metabolically generated electrophilic species with cyanide ion: metabolism of 1-benzylpyrrolidine. J Med Chem. 1980;23:133–9. https://doi.org/10.1021/jm00176a006

    Article  CAS  PubMed  Google Scholar 

  39. Ward DP, Trevor AJ, Kalir A, Adams JD, Baillie TA, Castagnoli N Jr. Metabolism of phencyclidine. The role of iminium ion formation in covalent binding to rabbit microsomal protein. Drug Metab Dispos. 1982;10:690–5

    CAS  PubMed  Google Scholar 

  40. Kalgutkar AS, Dalvie DK, Aubrecht J, Smith EB, Coffing SL, Cheung JR, et al. Genotoxicity of 2-(3-chlorobenzyloxy)-6-(piperazinyl)pyrazine, a novel 5-hydroxytryptamine2c receptor agonist for the treatment of obesity: role of metabolic activation. Drug Metab Dispos. 2007;35:848–58. https://doi.org/10.1124/dmd.106.013649

    Article  CAS  PubMed  Google Scholar 

  41. Kalgutkar AS, Bauman JN, McClure KF, Aubrecht J, Cortina SR, Paralkar J. Biochemical basis for differences in metabolism-dependent genotoxicity by two diazinylpiperazine-based 5-HT2C receptor agonists. Bioorg Med Chem Lett. 2009;19:1559–63. https://doi.org/10.1016/j.bmcl.2009.02.032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deepak Dalvie or Amit S. Kalgutkar.

Ethics declarations

Conflict of interest

Dr DD and Dr AK are employees of Crinetics Pharmaceuticals and Pfizer, respectively.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvie, D., Kalgutkar, A.S. Utilizing mechanistic organic chemistry training to study drug metabolism in preclinical drug discovery/development. Med Chem Res 32, 1922–1932 (2023). https://doi.org/10.1007/s00044-023-03085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03085-z

Keywords

Navigation