Skip to main content

Advertisement

Log in

Recent advances in triazole-benzenesulfonamide hybrids and their biological activities

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Hybridization is the process of fusion of two or more existing moieties to make a single molecule. Triazoles and benzenesulfonamides are the useful pharmacological agents possessing a wide spectrum of biological activities such as anti-malarial, anti-bacterial, anti-tumor, anti-cancer, anti-convulsant, analgesic etc. Hybridization of these two represents an advance approach in the direction of synthesis of more potent therapeutic candidates with higher potency and lesser side effects. In literature, several molecules having such benzenesulfonamide and triazole hybrid units in their structure have been synthesized and evaluated for various biological activities. The present review aims to summarize the pharmacological profile of triazole-benzesulfonamide hybrids as CA inhibitors, anti-cancer, anti-microbial, anti-trypanosomal, anti-malarial, anti-inflammatory agents etc. along with structure activity relationship.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chu XM, Wang C, Wang WL, Liang LL, Liu W, Gong KK, et al. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur J Med Chem. 2019;166:206. https://doi.org/10.1016/j.ejmech.2019.01.047.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Wang S, Ba Y, Xu Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur J Med Chem. 2019;174:1. https://doi.org/10.1016/j.ejmech.2019.04.033.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang YB, Liu W, Yang Y-S, Wang X-L, Zhu H-L, Bai L-F, et al. Synthesis, molecular modeling, and biological evaluation of 1,2,4-triazole derivatives containing pyridine as potential anti-tumor agents. Med Chem Res. 2013;22:3193–203. https://doi.org/10.1007/s00044-012-0306-5.

    Article  CAS  Google Scholar 

  4. Nagesh HN, Suresh N, Prakash GVSB, Gupta S, Rao JV, Sekhar KVGC. Synthesis and biological evaluation of novel phenanthridinyl piperazine triazoles via click chemistry as anti-proliferative agents. Med Chem Res. 2015;24:523–32. https://doi.org/10.1007/s00044-014-1142-6.

    Article  CAS  Google Scholar 

  5. Assarzadeh MJ, Almsirad A, Shafiee A, Koopaei MN, Abdollahi M. Synthesis of new thiazolo[3,2-b][1,2,4]triazole-6(5H)-one derivatives as potent analgesic and anti-inflammatory agents. Med Chem Res. 2014;23:948–57. https://doi.org/10.1007/s00044-013-0697-y.

    Article  CAS  Google Scholar 

  6. Sahu JK, Ganguly S, Kaushik A. Triazoles: A valuable insight into recent developments and biological activities. Chin J Nat Med. 2013;11:456–65. https://doi.org/10.1016/S1875-5364(13)60084-9.

    Article  CAS  PubMed  Google Scholar 

  7. Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. DrugDiscovToday. 2017;22:1572. https://doi.org/10.1016/j.drudis.2017.05.

    Article  CAS  Google Scholar 

  8. Rani A, Singh G, Singh A, Maqbool U, Kaur G, Singh J. CuAAC-ensembled 1,2,3-triazole-linked isosteres as pharmacophores in drug discovery: review. RSC Adv. 2020;10:5610–35. https://doi.org/10.1039/c9ra09510a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phatak PS, Bakale RD, Kulkarni RS, Dhumal ST, Dixit PP, KrishnaVS, et al. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg Med Chem Lett. 2020;30:127579. https://doi.org/10.1016/j.bmcl.2020.127579.

    Article  CAS  PubMed  Google Scholar 

  10. Badar AD, Sulakhe SM, Muluk MB, Rehman NMA, Dixit PP, Choudhari PB, et al. Synthesis of isoniazid-1,2,3-triazole conjugates: Antitubercular, antimicrobial evaluation and molecular docking study. J Heterocycl Chem. 2020;57:3544. https://doi.org/10.1002/jhet.4072.

    Article  CAS  Google Scholar 

  11. Kim S, Cho SN, Oh T, Kim P. Design and synthesis of 1H-1,2,3-triazoles derived from econazole as antitubercular agents. Bioorg Med Chem Lett. 2012;22:6844–7. https://doi.org/10.1016/j.bmcl.2012.09.041.

    Article  CAS  PubMed  Google Scholar 

  12. Kumar CPB, Prathibha BS, Prasad KNN, Raghu MS, Prashanth MK, Jayanna BK, et al. Click synthesis of 1,2,3-triazole based imidazoles: Antitubercular evaluation, molecular docking and HSA binding studies. Bioorg Med Chem Lett. 2021;36:127810. https://doi.org/10.1016/j.bmcl.2021.127810.

    Article  CAS  Google Scholar 

  13. Thanh ND, Hai DS, Bich VTN, Hien PTT, Duyen NTK, Mai NT, et al. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene−d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur J Med Chem. 2019;167:454. https://doi.org/10.1016/j.ejmech.2019.01.060.

    Article  CAS  PubMed  Google Scholar 

  14. Fu N, Wang S, Zhang Y, Zhang C, Yang D, Weng L, et al. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. Eur J Med Chem. 2017;136:596. https://doi.org/10.1016/j.ejmech.2017.05.

    Article  CAS  PubMed  Google Scholar 

  15. Pokhodylo N, Finiuk N, Klyuchivska O, Тupychak MA, Matiychuk V, Goreshnik E, et al. Novel N-(4-thiocyanatophenyl)-1H-1,2,3-triazole-4-carboxamides exhibit selective cytotoxic activity at nanomolar doses towards human leukemic T-cells. Eur J Med Chem. 2022;241:114633. https://doi.org/10.1016/j.ejmech.2022.114633.

    Article  CAS  PubMed  Google Scholar 

  16. Wang DP, Liu KL, Li XY, Lu GQ, Xue WH, Qian XH, et al. Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold. Eur J Med Chem. 2021;211:113083. https://doi.org/10.1016/j.ejmech.2020.113083.

    Article  CAS  PubMed  Google Scholar 

  17. Xu Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem. 2020;206:112686. https://doi.org/10.1016/j.ejmech.2020.112686.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur J Med Chem. 2019;168:357. https://doi.org/10.1016/j.ejmech.2019.02.055.

    Article  CAS  PubMed  Google Scholar 

  19. Najafi Z, Mahdavi M, Saeedi M, Karimpour-Razkenari E, EdraKi N, Sharifzadhe M, et al. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: in vitro and in vivo biological evaluation and docking study. Bioorg Chem. 2019;83:303. https://doi.org/10.1016/j.bioorg.2018.10.056.

    Article  CAS  PubMed  Google Scholar 

  20. Asif M. Pharmacological activities of Triazole analogues as antibacterial, antifungal, antiviral agents. Pharm. Sci Asia. 2017;44:59–74.

    CAS  Google Scholar 

  21. Kuashik CP, Pahwa A. Convenient synthesis, antimalarial and antimicrobial potential of thioethereal 1,4-disubstituted 1,2,3-triazoles with ester functionality. Med Chem Res. 2018;27:458–69. https://doi.org/10.1007/s00044-017-2072-x.

    Article  CAS  Google Scholar 

  22. Xu Z, Zhao S-J, Liu Y. Eur J Med Chem. 2019;183:111700. https://doi.org/10.1016/j.ejmech.2019.111700.

    Article  CAS  PubMed  Google Scholar 

  23. Legigan T, Migianu-Griffoni E, Redouane MA, Descamps A, Deschamp J, Gager O, et al. Synthesis and preliminary anticancer evaluation of new triazole bisphosphonate-based isoprenoid biosynthesis inhibitors. Eur J Med Chem. 2021;214:113241. https://doi.org/10.1016/j.ejmech.2021.113241.

    Article  CAS  PubMed  Google Scholar 

  24. Cao X, Wang W, Wang S, Bao L. Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. Eur J Med Chem. 2017;139:718. https://doi.org/10.1016/j.ejmech.2017.08.057.

    Article  CAS  PubMed  Google Scholar 

  25. Krishna KM, Inturi B, Pujar GV, Purohit MN, Vijaykumar GS. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur J Med Chem. 2014;84:516–29. https://doi.org/10.1016/j.ejmech.2014.07.051.

    Article  CAS  Google Scholar 

  26. Cheng Y-N, Jiang Z-H, Sun L-S, Su Z-Y, Zhang M-M, Li H-L. Synthesis of 1, 2, 4-triazole benzoyl arylamine derivatives and their high antifungal activities. Eur J Med Chem. 2020;200:112463. https://doi.org/10.1016/j.ejmech.2020.112463.

    Article  CAS  PubMed  Google Scholar 

  27. Singh R, Pujar GV, Purohit MN, Chandrasehekar VM. Synthesis, in vitro cytotoxicity, and antibacterial studies of new asymmetric bis-1,2,4-triazoles. Med Chem Res. 2013;22:2163–73. https://doi.org/10.1007/s00044-012-0209-5.

    Article  CAS  Google Scholar 

  28. Gao F, Wang T, Xiao J, Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur J Med Chem. 2019;173:274. https://doi.org/10.1016/j.ejmech.2019.04.043.

    Article  CAS  PubMed  Google Scholar 

  29. Bhatt MA, Imran M, Khan SA, Siddqui A. Biological activities of sulfonamides. Indian J Pharm Sci. 2005;67:151.

    Google Scholar 

  30. Ovung A, Bhattacharyya J. Sulfonamide drugs: structure, antibacterial property, toxicity, and biophysical interactions. Biophys Rev. 2021;13:259–72. https://doi.org/10.1007/s12551-021-00795-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Masini E, Carta F, Scozzafava A, Supuran CT. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Therapeutic Pat. 2013;23:705. https://doi.org/10.1517/13543776.2013.794788.

    Article  CAS  Google Scholar 

  32. Mishra SS, Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur J Med Chem. 2016;124:500. https://doi.org/10.1016/j.ejmech.2016.08.039.

    Article  CAS  PubMed  Google Scholar 

  33. Xu JH, Fan YL, Zhou J. Quinolone–triazole hybrids and their biological activities. J Heterocycl Chem. 2018;55:1854. https://doi.org/10.1002/jhet.3234.

    Article  CAS  Google Scholar 

  34. Singh S, Supuran CT. QSARs on human carbonic anhydrase VA and VB inhibitors of some new not yet synthesized, substituted aromatic/heterocyclic sulphonamides as anti-obesity agent. J Enzym Inhib Med Chem. 2012;27:666–72. https://doi.org/10.3109/14756366.2011.606544.

    Article  CAS  Google Scholar 

  35. Fabrizi F, Mincione F, Somma T, Scozzafava G, Galassi F, Masini E, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzym Inhib Med Chem. 2012;27:138–47. https://doi.org/10.3109/14756366.2011.597749.

    Article  CAS  Google Scholar 

  36. Sahin H, Can Z, Yildiz O, Kolayli S, Innocenti A, Scozzafava G, et al. Inhibition of carbonic anhydrase isozymes I and II with natural products extracted from plants, mushrooms and honey. J Enzym Inhib Med Chem. 2012;27:395–402. https://doi.org/10.3109/14756366.2011.593176.

    Article  CAS  Google Scholar 

  37. Sentürk M, Ekinci D, Göksu S, Supuran CT. Effects of dopaminergic compounds on carbonic anhydrase isozymes I, II, and VI. J Enzym Inhib Med Chem. 2012;27:365–9. https://doi.org/10.3109/14756366.2011.591290.

    Article  CAS  Google Scholar 

  38. Chohan ZH, Shad HA, Supuran CT. Synthesis, characterization and biological studies of sulfonamide Schiff’s bases and some of their metal derivatives. J Enzym Inhib Med Chem. 2012;27:58–68. https://doi.org/10.3109/14756366.2011.574623.

    Article  CAS  Google Scholar 

  39. Murray AB, Quadri M, Li H, McKenna R, Horenstein NA. Synthesis of saccharin-glycoconjugates targeting carbonic anhydrase using a one-pot cyclization/deprotection strategy. Carbohydr Res. 2019;476:65. https://doi.org/10.1016/j.carres.2019.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumar R, Sharma V, Bua S, Supuran CT, Sharma PK. Synthesis and biological evaluation of benzenesulfonamide-bearing 1,4,5-trisubstituted-1,2,3-triazoles possessing human carbonic anhydrase I, II, IV, and IX inhibitory activity. J Enzym Inhib Med Chem.2017;32:1187. https://doi.org/10.1080/14756366.2017.1367775.

    Article  CAS  Google Scholar 

  41. Hao S, Cheng X, Wang Ran An X, Xu H, Guo M, Li C, et al. Design, synthesis and biological evaluation of novel carbohydrate-based sulfonamide derivatives as antitumor agents. Bioorg Chem. 2020;104:104237. https://doi.org/10.1016/j.bioorg.2020.104237.

    Article  CAS  PubMed  Google Scholar 

  42. Said MA, Eldehna WM, Nocentini A, Bonardi A, Fahim SH, Bua S, et al. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur J Med Chem. 2019;185:111843. https://doi.org/10.1016/j.ejmech.2019.111843.

    Article  CAS  PubMed  Google Scholar 

  43. Chinchilli KK, Angeli A, Thacker PS, Korra LN, Biswas R, Arifuddin M, et al. Design, synthesis, and biological evaluation of 1,2,3-triazole-linked triazino[5,6-b]indole-benzene sulfonamide conjugates as potent carbonic anhydrase I, II, IX, and XIII Inhibitors. Metabolites. 2020;10:200. https://doi.org/10.3390/metabo10050200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh P, Swain B, Thacker PS, Kumar SD, Purnachander YP, Angeli A, et al. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg Chem. 2020;99:103839. https://doi.org/10.1016/j.bioorg.2020.103839.

    Article  CAS  PubMed  Google Scholar 

  45. Ram S, Celik G, Khloya P, Vullo D, Supuran CT, Sharma PK. Benzenesulfonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII. Bioorg Med Chem. 2014;22:1873. https://doi.org/10.1016/j.bmc.2014.01.055.

    Article  CAS  Google Scholar 

  46. Sharma V, Kumar R, Bua S, Supuran CT, Sharma PK. Synthesis of novel benzenesulfonamide bearing 1,2,3-triazole linked hydroxy-trifluoromethylpyrazolines and hydrazones as selective carbonic anhydrase isoforms IX and XII inhibitors. Bioorg Chem. 2019;85:198. https://doi.org/10.1016/j.bioorg.2019.01.002.

    Article  CAS  PubMed  Google Scholar 

  47. Nocentini A, Carta F, Ceruso M, Bartolucci G, Supuran CT. Click-tailed coumarins with potent and selective inhibitory action against the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem. 2015;23:6955. https://doi.org/10.1016/j.bmc.2015.09.041.

    Article  CAS  PubMed  Google Scholar 

  48. Kumar R, Vats L, Bua S, Supuran CT, Sharma PK. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545. https://doi.org/10.1016/j.ejmech.2018.06.021.

    Article  CAS  PubMed  Google Scholar 

  49. El-Gazzar MG, Nafie NH, Nocentini A, Ghorab MM, Heiba HI, Supuran CT. Carbonic anhydrase inhibition with a series of novel benzenesulfonamide-triazole conjugates. J Enzym Inhib Med Chem. 2018;33:1565. https://doi.org/10.1080/14756366.2018.1513927.

    Article  CAS  Google Scholar 

  50. Carta F, Ferraroni M, Scozzafava A, Supuran CT. Fluorescent sulfonamide carbonic anhydrase inhibitors incorporating 1,2,3-triazole moieties: Kinetic and X-ray crystallographic studies. Bioorg Med Chem. 2016;24:104. https://doi.org/10.1016/j.bmc.2015.11.031.

    Article  CAS  PubMed  Google Scholar 

  51. Aimene Y, Eychenne R, Mallet-Ladeira S, Saffon N, Winum JY, Nocentini A, et al. Novel Re(I) tricarbonyl coordination compounds based on 2-pyridyl-1,2,3-triazole derivatives bearing a 4-amino-substituted benzenesulfonamide arm: synthesis, crystal structure, computational studies and inhibitory activity against carbonic anhydrase I, II, and IX isoforms. JEnzymeInhib Med Chem. 2019;34:773. https://doi.org/10.1080/14756366.2019.1585835.

    Article  CAS  Google Scholar 

  52. Vats L, Kumar R, Bua S, Nocentini A, Gratteri P, Supuran CT, et al. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem. 2019;183:111698. https://doi.org/10.1016/j.ejmech.2019.111698.

    Article  CAS  PubMed  Google Scholar 

  53. Manzoor S, Petreni A, Raza MK, Supuran CT, Hoda N. Novel triazole-sulfonamide bearing pyrimidine moieties with carbonic anhydrase inhibitory action: Design, synthesis, computational and enzyme inhibition studies. BioorganicMed Chem Lett. 2019;48:128249. https://doi.org/10.1016/j.bmcl.2021.128249.

    Article  CAS  Google Scholar 

  54. Kurt BZ, Sonmez F, Öztürk D, Akdemir A, Angeli A, Supuran CT. Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. Eur J Med Chem. 2019;183:111702. https://doi.org/10.1016/j.ejmech.2019.111702.

    Article  CAS  Google Scholar 

  55. Mustafa G, Angeli A, Zia-ur-Rehman M, Akbar N, Ishtiaq S, Supuran CT.An Efficient method for the synthesis of novel derivatives 4-{5-[4-(4-amino-5-mercapto-4H-[1,2,4]triazol-3-yl)-phenyl]-3-trifluoromethyl-pyrazol-1-yl}-benzenesulfonamide and their anti-inflammatory potential. Bioorganic Chem. 2019;91:103110.

    Article  Google Scholar 

  56. Swain B, Angeli A, Angapelly S, Thacker PS, Singh P, Supuran CT, et al. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. JEnzymeInhib Med Chem. 2019;34:1199. https://doi.org/10.1080/14756366.2019.1629432.

    Article  CAS  Google Scholar 

  57. Salmon AJ, Williams ML, Wu QK, Morizzi J, Gregg D, Charman SA, et al. Metallocene-based inhibitors of cancer-associated carbonic anhydrase enzymes IX and XII. J Med Chem. 2012;55:5506. https://doi.org/10.1021/jm300427m.

    Article  CAS  PubMed  Google Scholar 

  58. Carroux CJ, Rankin GM, Moeker J, Bornaghi LF, Katneni K, Morizzi J, et al. Prodrug Approach Toward Cancer-Related Carbonic Anhydrase. Inhibition J Med Chem. 2013;56:9623. https://doi.org/10.1021/jm401163e.

    Article  CAS  PubMed  Google Scholar 

  59. Bua S, Osman SM, Del PS, Capasso C, AlOthman Z, Nocentini A, et al. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting Mycobacterium tuberculosis and Vibrio cholera. Bioorg Chem. 2019;86:183. https://doi.org/10.1016/j.bioorg.2019.01.065.

    Article  CAS  PubMed  Google Scholar 

  60. Batra H, Pawar S, Bahl D. Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol Res. 2019;139:51. https://doi.org/10.1016/j.phrs.2018.11.005.

    Article  CAS  Google Scholar 

  61. Cui W, Auoidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering anti-cancer drugs via computational methods. Front Pharmacol. 2020;11:733. https://doi.org/10.3389/fphar.2020.00733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alam MM. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm. 2022;355:2100158. https://doi.org/10.1002/ardp.202100158.

    Article  CAS  Google Scholar 

  63. Rakesh KP, Wang SM, Leng J, Ravindar L, Asiri AM, Marwani HM, et al. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. AnticancerAgentsMed Chem. 2018;18:488. https://doi.org/10.2174/1871520617666171103140749.

    Article  CAS  Google Scholar 

  64. RezKi N, Almehmadi MA, Ihmaid S, Shehata AM, Omar AM, Ahmed HEA. Reda Aouad, Mohamed RA. Bioorg Chem. 2020;103:104133. https://doi.org/10.1016/j.bioorg.2020.104133.

    Article  CAS  PubMed  Google Scholar 

  65. Elzahhar PA, Abd El Wahab SM, Elagawany M, Daabees H, Belal ASF, EL-Yazbi AF, et al. Expanding the anticancer potential of 1,2,3-triazoles via simultaneously targeting Cyclooxygenase-2, 15-lipoxygenase and tumor-associated carbonic anhydrases. Eur J Med Chem. 2020;200:112439. https://doi.org/10.1016/j.ejmech.2020.112439.

    Article  CAS  PubMed  Google Scholar 

  66. Almashal FAK, Al-Hujaj HH, Jassem AM, Al-Masoudi NAA. Click Synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB 231) and anti-HIV activities of new 1,4-disubstituted-1,2,3-triazole thymine derivatives. Russ J Bioorg Chem. 2020;46:360. https://doi.org/10.1134/S1068162020030024.

    Article  Google Scholar 

  67. Elgogary SR, Khidre RE, El-Telbani EM. Regioselective synthesis and evaluation of novel sulfonamide 1,2,3-triazole derivatives as antitumor agents. J Iran Chem Soc. 2020;17:765. https://doi.org/10.1007/s13738-019-01796-y.

    Article  CAS  Google Scholar 

  68. Fu DJ, Liu YC, Yang JJ, Zhang J, XiongCD, Cao ZS, et al. Design and synthesis of sulfonamide-1,2,3-triazole derivatives bearing a dithiocarbamate moiety as antiproliferative agents. J Chem Pharm Res. 2017;41:523. https://doi.org/10.3184/174751917X15027935057950.

    Article  CAS  Google Scholar 

  69. Negi DS, Kumar G, Singh M, Singh N. Antibacterial activity of benzimidazole derivatives. Mini Rev Med Chem. 2017;6:18.

    CAS  Google Scholar 

  70. Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother Res. 2019;33:13. https://doi.org/10.1002/ptr.6208.

    Article  CAS  PubMed  Google Scholar 

  71. Adamczak A, OzarowsKi M, KarpinsKi TM. Antibacterial activity of some flavonoids and organic acids widely distributed in plants. J Clin Med. 2020;9:109. https://doi.org/10.3390/jcm9010109.

    Article  CAS  Google Scholar 

  72. Al-Sehemi AG. Synthesis, structure elucidation and antimicrobial evaluation of some novel triazolo[3,4-b]thiadiazoles and triazolo[3,4-b]thiadiazine derivatives. Afinidad -Barc. 2009;540:177.

    Google Scholar 

  73. Faidallah HM, Khan KA, Asiri AM. Synthesis and biological evaluation of new 3,5-di(trifluoromethyl)-1,2,4-triazolesulfonylurea and thiourea derivatives as antidiabetic and antimicrobial agents. J Fluor Chem. 2011;132:870. https://doi.org/10.1016/j.jfluchem.2011.06.014.

    Article  CAS  Google Scholar 

  74. Zoumpoulakis P, Camoutsis C, Pairas G, Sokovic M, Glamoclija J, Potamitis C, et al. Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as potential antibacterial and antifungal agents. Biological evaluation and conformational analysis studies. Bioorg Med Chem. 2012;20:1569. https://doi.org/10.1016/j.bmc.2011.12.031.

    Article  CAS  PubMed  Google Scholar 

  75. Hafez HN, Alsalamah SA, El-Gazzar ARBA. Synthesis of thiophene and N-substituted thieno[3,2-d]pyrimidine derivatives as potent antitumor and antibacterial agents. ActaPharm Sci. 2017;67:275. https://doi.org/10.1515/acph-2017-0028.

    Article  CAS  Google Scholar 

  76. Al-blewi FF, Almehmadi MA, Aouad MR, Bardaweel SK, Sahu PK, Messali M, et al. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem Cent J. 2018;12:110. https://doi.org/10.1186/s13065-018-0479-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. He SC, Zhang HZ, Zhang HJ, Sun Q, Zhou CH. Design and synthesis of novel sulfonamide-derived triazoles and bioactivity exploration. Med Chem. 2020;16:104. https://doi.org/10.2174/1573406414666181106124852.

    Article  CAS  PubMed  Google Scholar 

  78. Desai S, Laddi U, Bennur R, Bennur S. Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Indian Chem. 2013;52B:1176–81.

    CAS  Google Scholar 

  79. Ezabadi IR, Camoutsis C, Zoumpoulakis P, GeronikaKi A, Sokovic M, Glamocilija J, et al. Sulfonamide-1,2,4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. Bioorg Med Chem. 2008;16:1150–61. https://doi.org/10.1016/j.bmc.2007.10.082.

    Article  CAS  PubMed  Google Scholar 

  80. Kaushik CP, Pahwa A, Kumar A, Singh D, Kumar K. Facile synthesis, characterization, and antimicrobial studies of some disubstituted 1,2,3-triazoles with sulfonamide functionality. Synth Commun. 2017;47:1485. https://doi.org/10.1080/00397911.2017.1333124.

    Article  CAS  Google Scholar 

  81. Wang XL, Wan K, Zhou CH. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur J Med Chem. 2010;45:4631. https://doi.org/10.1016/j.ejmech.2010.07.031.

    Article  CAS  PubMed  Google Scholar 

  82. WilKinson BL, Bornaghi LF, Wright AD, Houston TA, Poulsen SA. Anti-mycobacterial activity of a bis-sulfonamide. Bioorg Med Chem Lett. 2007;17:1355–7. https://doi.org/10.1016/j.bmcl.2006.11.079.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang HZ, Jeyakkumar P, Kumar KV, Zhou CH. Synthesis of novel sulfonamide azoles via C–N cleavage of sulfonamides by azole ring and relational antimicrobial study. N Chem. 2015;39:5776. https://doi.org/10.1039/C4NJ01932F.

    Article  CAS  Google Scholar 

  84. Desai SR, Laddi U, Bennur RS, Patil PA, Bennur S. Synthesis and pharmacological activities of some new 3-substituted-4-amino-5-mercapto-1,2,4-triazoles. Indian PharmSci. 2011;73:115. 10.4103%2F0250-474X.89771.

    Article  CAS  Google Scholar 

  85. SzafrańsKi K, SławińsKi J, Kędzia A, Kwapisz E. Syntheses of novel 4-substituted N-(5-amino-1H-1,2,4-triazol-3-yl)pyridine-3-sulfonamide derivatives with potential antifungal activity. Molecules. 2017;22:1926. https://doi.org/10.3390/molecules22111926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marchiori MF, Riul TB, Bortot LO, Andrade P, Junqueira GG, Foca G, et al. Binding of triazole-linked galactosyl arylsulfonamides to galectin-3 affects Trypanosoma cruzi cell invasion. Bioorg Med Chem. 2017;25:6049. https://doi.org/10.1016/j.bmc.2017.09.042.

    Article  CAS  PubMed  Google Scholar 

  87. Papadopoulou MV, Bloomer WD, Rosenzweig HS, Chatelain E, Kaiser M, WilKinson SR, et al. Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents. J Med Chem. 2012;55:5554. https://doi.org/10.1021/jm300508n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kalaria PN, Karad SC, Raval DK. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur J Medicinal Chem. 2018;158:917. https://doi.org/10.1016/j.ejmech.2018.08.040.

    Article  CAS  Google Scholar 

  89. Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infect Drug Resist. 2020;13:4047. 10.2147%2FIDR.S279433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Conrad MD, Rosenthal P. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect Dis. 2019;19:338. https://doi.org/10.1016/S1473-3099(19)30261-0.

    Article  Google Scholar 

  91. Batra N, Rajendran V, Agarwal D, Wadi I, Ghosh PC, Gupta RD, et al. Synthesis and antimalarial evaluation of [1,2,3]-triazole-tethered sulfonamide-berberine hybrids. ChemistrySelect. 2018;3:9790. https://doi.org/10.1002/slct.201801905.

    Article  CAS  Google Scholar 

  92. Boechat N, Pinheiro LCS, Santos-Filho OA, SilvaI C. Design and Synthesis of New N-(5-trifluoromethyl)-1H-1,2,4-triazol-3-yl benzenesulfonamides as possible antimalarial prototypes. Molecules. 2011;16:8083. https://doi.org/10.3390/molecules16098083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dvorakavo M, Landa P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol Res. 2017;124:126. https://doi.org/10.1016/j.phrs.2017.08.002.

    Article  CAS  Google Scholar 

  94. Azab A, Nassar A, Azab AN. Anti-inflammatory activity of natural products. Molecules. 2016;21:132. https://doi.org/10.3390/molecules21101321.

    Article  CAS  Google Scholar 

  95. Paprocka R, Wiese M, Eljaszewicz A, Basa AH, Gzella A, Banachiewicz BM, et al. Synthesis and anti-inflammatory activity of new 1,2,4-triazole derivatives. Bioorg Med Chem Lett. 2015;25:2664. https://doi.org/10.1016/j.bmcl.2015.04.079.

    Article  CAS  PubMed  Google Scholar 

  96. Dixit D, Verma KP, Marwaha RK. A review on ‘triazoles’: their chemistry, synthesis and pharmacological potentials. J Iran Chem Soc. 2021;18:2535. https://doi.org/10.1007/s13738-021-02231-x.

    Article  CAS  Google Scholar 

  97. Khan FA, Mushtaq S, Naz S, Farooq U, Zaidi A, Bukhari SM, et al. Sulfonamides as potential bioactive scaffolds. Curr Org Chem. 2018;22:818. https://doi.org/10.2174/1385272822666180122153839.

    Article  CAS  Google Scholar 

  98. Ibrahim TS, Salem IM, Mostafa SM, El-Sabbagh OI, ElKhamisi KM, Hegazy L, et al. Design, synthesis, and pharmacological evaluation of novel and selective COX-2 inhibitors based on bumetanide scaffold. Bioorg Chem. 2020;100:103878. https://doi.org/10.1016/j.bioorg.2020.103878.

    Article  CAS  PubMed  Google Scholar 

  99. Assali M, Abualhasan M, Sawaftah H, Hawash M, Mousa A. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors. J Chem. 2020;2020:1. https://doi.org/10.1155/2020/6393428.

    Article  CAS  Google Scholar 

  100. Abdelazeem AH, El-Din AGS, Arab HH, El-Saadi MT, El-Moghazi SM, Amin NH. J Mol Struct. 2021;1240:130565. https://doi.org/10.1016/j.molstruc.2021.130565.

    Article  CAS  Google Scholar 

  101. Bekheit MS, Mohamed HA, Abdel-Wahab BF, Fouad MA. Design and synthesis of new 1,4,5-trisubstituted triazole-bearing benzenesulfonamide moiety as selective COX-2 inhibitors. J Mol Struct. 2021;30:1125. https://doi.org/10.1007/s00044-021-02716-7.

    Article  CAS  Google Scholar 

  102. Cristina A, Leonte D, Vlase L, Bencze LB, Silvia Imre S, Bogdan Apan B, et al. Pharmacia. 2018;66:5.

    Google Scholar 

  103. El-Dershaby NH, El-Hawash SA, Kassab SE, Daabees HG, Moneim AEA, El-Miligy MMM. Rational design and synthesis of new selective COX-2 inhibitors with In Vivo PGE2-lowering activity by tethering benzenesulfonamide and 1,2,3-triazole pharmacophores to some NSAIDs. Pharmaceuticals. 2022;15:1165. https://doi.org/10.3390/ph15101165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Khalid W, Badshah A, Khan A, Nadeem H. Ahmed S. Synthesis, characterization, molecular docking evaluation, antiplatelet and anticoagulant actions of 1,2,4 triazole hydrazone and sulfonamide novel derivatives. Chem Cent J. 2018;12:11. https://doi.org/10.1186/s13065-018-0378-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Virk NA, Rehman A, Abbasi MA. Microwave-assisted synthesis of triazole derivatives conjugated with piperidine as new anti-enzymatic agents. J Heterocycl Chem. 2019;57:1387. https://doi.org/10.1002/jhet.3875.

    Article  CAS  Google Scholar 

  106. Yang J, Shibu MA, Kong L, Luo J, Badrealam Khan F, Huang Y, et al. Design, synthesis, and structure–activity relationships of 1,2,3-triazole benzenesulfonamides as new selective leucine-zipper and sterile-α motif Kinase (ZAK) Inhibitors. J Med Chem. 2020;63:2114. https://doi.org/10.1021/acs.jmedchem.9b00664.

    Article  CAS  PubMed  Google Scholar 

  107. Liu J, Liu Q, Yang X, Xu S, Zhang H, Bai R, et al. Design, synthesis, and biological evaluation of 1,2,4-triazole bearing 5-substituted biphenyl-2-sulfonamide derivatives as potential antihypertensive candidates. Bioorg Med Chem. 2013;21:7742. https://doi.org/10.1016/j.bmc.2013.10.017.

    Article  CAS  PubMed  Google Scholar 

  108. Siliveri S, Bashaboina N, Vamaraju HB, Raj S. Int J Pharm Pharm Sci. 2019;45:381.

    CAS  Google Scholar 

  109. Pingaew R, Prachayasittikul V, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, et al. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg Med Chem. 2015;23:3472. https://doi.org/10.1016/j.bmc.2015.04.036.

    Article  CAS  PubMed  Google Scholar 

  110. Batra N, Rajendran V, Wadi I, Lathwal A, Dutta RK, Ghosh PC, et al. Synthesis, characterization, and antiplasmodial efficacy of sulfonamide-appended [1,2,3]-triazoles. J Heterocycl Chem. 2020;57:1625. https://doi.org/10.1002/jhet.3888.

    Article  CAS  Google Scholar 

  111. Basaran E, Iyidogan AK. Synthesis of novel chiral sulfonamide-bearing 1,2,4-triazole-3-thione analogs derived from D- and L-phenylalanine esters as potential anti-influenza agents. Chirality. 2016;28:495. https://doi.org/10.1002/chir.22607.

    Article  CAS  PubMed  Google Scholar 

  112. Siliveri S, Vamaraju HB, Raj S. Design, synthesis, molecular docking, ADMET studies, and biological evaluation of isoxazoline and pyrazoline incorporating 1,2,3-triazole benzene sulfonamides. Russ J Bioorg Chem. 2019;45:381. https://doi.org/10.1134/S1068162019050108.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, SR, is grateful to the J.C. Bose University of Science and Technology, YMCA for providing Seed Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sita Ram.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chander, Monika, Sharma, P.K. et al. Recent advances in triazole-benzenesulfonamide hybrids and their biological activities. Med Chem Res 32, 777–801 (2023). https://doi.org/10.1007/s00044-023-03052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03052-8

Keywords

Navigation