Skip to main content
Log in

Microwave assisted synthesis and AChE inhibition studies of novel thiazolo and thiadiazolo [3,2-a]pyrimidinone fused dihydrofuran compounds

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Novel dihydro-5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones (3a–r) and 6H-furo[2,3-d][1,3,4]thiadiazolo[3,2-a]pyrimidin-8(7H)-ones (3s–v) were designed and obtained from radical cyclizations between 7-hydroxy-5H-thiazolo[3,2-a]pyrimidin-5-one derivatives (1a–d) and 7-hydroxy-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (1e) with various alkenes (2a–h) mediated by Mn(OAc)3. Obtained compounds were characterized with 1H NMR, 13C NMR, 19F NMR, FTIR and HRMS techniques. In vitro AChE inhibitory results of these compounds show that compounds (3i–p) are the most active AChEI’s (AChE inhibitor) with IC50 values between 0.15 and 15.16 µM. Also, ligand protein interactions of two most active compounds (3i and 3j) were investigated by molecular docking studies. Furthermore, druglikeness and ADME analyses of 3i–p were performed. All tested compounds showed satisfactory druglike characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alzheimer’s Association Report. Alzheimer’s disease facts and figures. Alzheimers Dement. 2017;13:325–73. https://doi.org/10.1016/j.jalz.2017.02.001.

    Article  Google Scholar 

  2. Querfurth HW, LaFerla FM. Alzheimer’s disease. N Engl J Med. 2010;362:329–44. https://doi.org/10.1056/NEJMra0909142.

    Article  CAS  PubMed  Google Scholar 

  3. Dumas JA, Newhouse PA. The cholinergic hypothesis of cognitive aging revisited again: cholinergic functional compensation. Pharmacol Biochem Behav. 2011;99:254–61. https://doi.org/10.1016/j.pbb.2011.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase Inhibitors. Pharmacol Toxicol. 2013;11:315. https://doi.org/10.2174/1570159X11311030006.

    Article  CAS  Google Scholar 

  5. Pathania S, Narang RK, Rawal RK. Role of sulphur-heterocycles in medicinal chemistry: an update. Eur J Med Chem. 2019;180:486–508. https://doi.org/10.1016/j.ejmech.2019.07.043.

    Article  CAS  PubMed  Google Scholar 

  6. Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules. 2020;25:1909 https://doi.org/10.3390/molecules25081909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Petrou A, Fesatidou M, Geronikaki A. Thiazole ring-A biologically active scaffold. Molecules. 2021;26:3166. https://doi.org/10.3390/molecules26113166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang X, Wang Z, Zhong X, Wang X, Chen L, He M, et al. Synthesis and biological activities of benzothiazole derivatives bearing a 1,3,4-thiadiazole moiety. Phosphorus Sulfur Silicon Relat Elem. 2019;194:241–8. https://doi.org/10.1080/10426507.2018.1539992.

    Article  CAS  Google Scholar 

  9. Zarenezhad E, Farjam M, Iraji A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J Mol Struct. 2021;1230:129833. https://doi.org/10.1016/j.molstruc.2020.129833.

    Article  CAS  Google Scholar 

  10. Mohamed T, Yeung JCK, Vasefi MS, Beazely MA, Rao PPN. Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template. Bioorg Med Chem Lett. 2012;22:4707–12. https://doi.org/10.1016/j.bmcl.2012.05.077.

    Article  CAS  PubMed  Google Scholar 

  11. Mohamed T, Yeung JCK, Rao PPN. Development of 2-substituted-N-(naphth-1-ylmethyl) and N-benzhydrylpyrimidin-4-amines as dual cholinesterase and Aβ-aggregation inhibitors: synthesis and biological evaluation. Bioorg Med Chem Lett. 2011;21:5881–7. https://doi.org/10.1016/j.bmcl.2011.07.091.

    Article  CAS  PubMed  Google Scholar 

  12. Mohamed T, Zhao X, Habib LK, Yang J, Rao PPN. Design, synthesis and structure–activity relationship (SAR) studies of 2,4-disubstituted pyrimidine derivatives: dual activity as cholinesterase and Aβ-aggregation inhibitors. Bioorg Med Chem. 2011;19:2269–81. https://doi.org/10.1016/j.bmc.2011.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mohamed T, Rao PPN. Design, synthesis and evaluation of 2,4-disubstituted pyrimidines as cholinesterase inhibitors. Bioorg Med Chem Lett. 2010;20:3606–9. https://doi.org/10.1016/j.bmcl.2010.04.108.

    Article  CAS  PubMed  Google Scholar 

  14. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Ali MA. Microwave assisted synthesis, cholinesterase enzymes inhibitory activities and molecular docking studies of new pyridopyrimidine derivatives. Bioorg Med Chem. 2013;21:3022–31. https://doi.org/10.1016/j.bmc.2013.03.058.

    Article  CAS  PubMed  Google Scholar 

  15. Manzoor S, Prajapati SK, Majumdar S, et al. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: design, synthesis, crystal structure and in-vitro biological evaluation. Eur J Med Chem. 2021;215:113224. https://doi.org/10.1016/j.ejmech.2021.113224.

    Article  CAS  PubMed  Google Scholar 

  16. Da Silva AMPW, Mittersteiner M, Da Silva FM, D’Avila F, Nogara PA, Nogara KF, et al. Design, synthesis, and cholinesterase inhibitory activity of 4‐substituted‐6‐(trihalomethyl)‐2‐methylsulfanyl pyrimidines. ChemistrySelect. 2021;6:1204–9. https://doi.org/10.1002/slct.202100125.

    Article  CAS  Google Scholar 

  17. Yao H, Uras G, Zhang P, et al. Discovery of novel tacrine–pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of Alzheimer’s disease. J Med Chem. 2021;64:7483–506. https://doi.org/10.1021/acs.jmedchem.1c00160.

    Article  CAS  PubMed  Google Scholar 

  18. Basiri A, Xiao M, McCarthy A, Dutta D, Byrareddy SN, Conda-Sheridan M. Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors. Bioorg Med Chem Lett. 2017;27:228–31. https://doi.org/10.1016/j.bmcl.2016.11.065.

    Article  CAS  PubMed  Google Scholar 

  19. Basiri A, Murugaiyah V, Osman H, Kumar RS, Kia Y, Hooda A, et al. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines. Bioorg Med Chem. 2014;22:906–16. https://doi.org/10.1016/j.bmc.2013.11.020.

    Article  CAS  PubMed  Google Scholar 

  20. Zhi H, Chen L, Zhang L, Liu S, Wan DCC, Lin H, et al. 5H-thiazolo[3,2-a]pyrimidine derivatives as a new type of acetylcholinesterase inhibitors. Arkivoc. 2008;2008:266–77. https://doi.org/10.3998/ark.5550190.0009.d29.

    Article  Google Scholar 

  21. Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Modern advances in heterocyclic chemistry in drug discovery. Org Biomol Chem. 2016;14:6611–37. https://doi.org/10.1039/c6ob00936k.

    Article  CAS  PubMed  Google Scholar 

  22. Melikyan GG. Manganese(III) mediated reactions of unsaturated systems. Synthesis. 1993;1993:833–50. https://doi.org/10.1055/s-1993-25951.

    Article  Google Scholar 

  23. Snider BB. Manganese(III)-based oxidative free-radical cyclizations. Chem Rev. 1996;96:339–64. https://doi.org/10.1021/cr950026m.

    Article  CAS  PubMed  Google Scholar 

  24. Nair V, Mohanan K, Suja TD, Suresh E. Stereoselective synthesis of 3,4-trans-disubstituted pyrrolidines and cyclopentanes via intramolecular radical cyclizations mediated by CAN. Tetrahedron Lett. 2006;47:2803–6. https://doi.org/10.1016/j.tetlet.2006.02.051.

    Article  CAS  Google Scholar 

  25. Yilmaz M, Ustalar A. Synthesis of 2-(2-phenylethenyl) substituted 4,5-dihydrofurans by regioselective addition of 1,3-dicarbonyl compounds to dienes promoted by cerium(IV) ammonium nitrate. Arkivoc. 2016a;2016:202–13. https://doi.org/10.3998/ark.5550190.p009.455.

    Article  CAS  Google Scholar 

  26. Yılmaz M, Yılmaz EVB, Pekel AT. Radical cyclization of fluorinated 1,3-dicarbonyl compounds with dienes using manganese(III) acetate and synthesis of fluoroacylated 4,5-dihydrofurans. Helv Chim Acta. 2011;94:2027–38. https://doi.org/10.1002/hlca.201100105.

    Article  CAS  Google Scholar 

  27. Nguyen V-H, Nishino H, Kurosawa K. Convenient synthesis of 3-cyano-4,5-dihydrofurans and 4-cyano-1,2-dioxan-3-ols using acylacetonitrile building block. Tetrahedron Lett. 1996;37:4949–52. https://doi.org/10.1016/0040-4039(96)01076-3.

    Article  CAS  Google Scholar 

  28. Hocaoglu B, Yilmaz M. Regioselective radical addition of 3-oxopropanenitriles with terminal dienes promoted by cerium(IV) ammonium nitrate and manganese(III) acetate. Synth Commun. 2019;49:1938–46. https://doi.org/10.1080/00397911.2019.1611858.

    Article  CAS  Google Scholar 

  29. Yılmaz M. Synthesis of dihydrofurans containing trifluoromethyl ketone and heterocycles by radical cyclization of fluorinated 1,3-dicarbonyl compounds with 2-thienyl and 2-furyl substituted alkenes. Tetrahedron. 2011;67:8255–63. https://doi.org/10.1016/j.tet.2011.08.098.

    Article  CAS  Google Scholar 

  30. Özgür M, Yılmaz M, Nishino H, Çinar Avar E, Dal H, Pekel AT, et al. Efficient syntheses and antimicrobial activities of new thiophene containing pyranone and quinolinone derivatives using manganese(III) acetate: the effect of thiophene on ring closure–opening reactions. New J Chem. 2019;43:5737–51. https://doi.org/10.1039/c9nj00054b.

    Article  CAS  Google Scholar 

  31. Ustalar A, Yilmaz M. Microwave assisted synthesis of 2,3-dihydro-4H-benzo[4,5]thiazolo[3,2-a]furo[2,3-d]pyrimidin-4-ones and 6,7-dihydro-5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones using Mn(OAc)3. Tetrahedron Lett. 2017;58:516–9. https://doi.org/10.1016/j.tetlet.2016.12.067.

    Article  CAS  Google Scholar 

  32. Yilmaz M, Inal AU. Microwave assisted synthesis of 2,3-dihydro-4H-benzo[4,5]thiazolo[3,2-a]furo[2,3-d] pyrimidin-4-ones by radical addition of 2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a] pyrimidin-4-ones to various conjugated alkenes and dienes mediated Mn(OAc)3. Tetrahedron. 2022;116:132806. https://doi.org/10.1016/j.tet.2022.132806.

    Article  CAS  Google Scholar 

  33. Sari S, Yilmaz M. Synthesis, characterization, acetylcholinesterase inhibition, and molecular docking studies of new piperazine substituted dihydrofuran compounds. Med Chem Res. 2020;29:1804–18. https://doi.org/10.1007/s00044-020-02599-0.

    Article  CAS  Google Scholar 

  34. Sari S, Yilmaz M. Acetylcholinesterase inhibition, molecular docking and ADME prediction studies of new dihydrofuran-piperazine hybrid compounds. Med Chem Res. 2021;30:2114–26. https://doi.org/10.1007/s00044-021-02788-5.

    Article  CAS  Google Scholar 

  35. Wiesner J, Kříž Z, Kuča K, Jun D, Koča J. Acetylcholinesterases – the structural similarities and differences. J Enzyme Inhib Med Chem. 2007;22:417–24. https://doi.org/10.1080/14756360701421294.

    Article  CAS  PubMed  Google Scholar 

  36. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–6. https://doi.org/10.1021/jm300871x.

    Article  CAS  PubMed  Google Scholar 

  37. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0.

    Article  CAS  PubMed  Google Scholar 

  39. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1998;1:55–68. https://doi.org/10.1021/cc9800071.

    Article  Google Scholar 

  40. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23. https://doi.org/10.1021/jm020017n.

    Article  CAS  PubMed  Google Scholar 

  41. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44:1841–6. https://doi.org/10.1021/jm015507e.

    Article  CAS  PubMed  Google Scholar 

  42. Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. Fsp3: a new parameter for drug-likeness. Drug Discovery Today. 2020;25:1839–45. https://doi.org/10.1016/j.drudis.2020.07.017.

    Article  CAS  PubMed  Google Scholar 

  43. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000;43:3867–77. https://doi.org/10.1021/jm000292e.

    Article  CAS  PubMed  Google Scholar 

  44. Daina A, Michielin O, Zoete V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model. 2014;54:3284–301. https://doi.org/10.1021/ci500467k.

    Article  CAS  PubMed  Google Scholar 

  45. XLOGP Program Version: 3.2.2. http://www.sioc-ccbg.ac.cn/software/xlogp3/.

  46. Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999;39:868–73. https://doi.org/10.1021/ci990307l.

    Article  CAS  Google Scholar 

  47. Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y. Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull. 1992;40:127–30. https://doi.org/10.1248/cpb.40.127.

    Article  CAS  Google Scholar 

  48. FILTER-IT Program Version: 1.0.2. http://www-silicos-it.com.

  49. Delaney JS. ESOL: estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004;44:1000–5. https://doi.org/10.1021/ci034243x.

    Article  CAS  PubMed  Google Scholar 

  50. Ali J, Camilleri P, Brown MB, Hutt AJ, Kirton SB. In silico prediction of aqueous solubility using simple QSPR models: the importance of phenol and phenol-like moieties. J Chem Inf Comput Sci. 2012;52:2950–7. https://doi.org/10.1021/ci300447c.

    Article  CAS  Google Scholar 

  51. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–40. https://doi.org/10.1021/jm901137j.

    Article  CAS  PubMed  Google Scholar 

  52. Brenk R, Schipani A, James D, Krasowski A, Gilbert IH, Frearson J, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem. 2008;3:435–44. https://doi.org/10.1002/cmdc.200700139.

    Article  CAS  PubMed  Google Scholar 

  53. Kappe T. Synthesen von heterocyclen, 95. Mitt.: chinolizine und indolizine I: eine synthese von 2-Hydroxychinolizinonen-(4). Monatsh Chem. 1967;98:874–86.

    Article  CAS  Google Scholar 

  54. Roma G, Braccio MD, Carrieri A, Grossi G, Leoncini G, Grazia Signorello M, et al. Coumarin, chromone, and 4(3H)-pyrimidinone novel bicyclic and tricyclic derivatives as antiplatelet agents: synthesis, biological evaluation, and comparative molecular field analysis. Bioorg Med Chem. 2003;11:123–38. https://doi.org/10.1016/s0968-0896(02)00307-3.

    Article  CAS  PubMed  Google Scholar 

  55. Lauer RF, Zenchoff G. Cyclic condensations of 2-amino-1,3,4-thiadiazole with 1,3-dicarbonyl compounds. J Heterocycl Chem. 1976;13:291–3. https://doi.org/10.1002/jhet.5570130218.

    Article  CAS  Google Scholar 

  56. Namai H, Ikeda H, Kato N, Mizuno K. Substituent effects on the energies of the electronic transitions of geminally diphenyl-substituted trimethylenemethane (TMM) radical cations. Experimental and theoretical evidence for a twisted molecular and localized electronic structure. J Phys Chem A. 2007;111:4436–42. https://doi.org/10.1021/jp068308l.

    Article  CAS  PubMed  Google Scholar 

  57. Berthiol F, Doucet H, Santelli M. Synthesis of polysubstituted alkenes by Heck vinylation or Suzuki cross-coupling reactions in the presence of a tetraphosphane−palladium catalyst. Eur J Org Chem. 2003;2003:1091–6. https://doi.org/10.1002/ejoc.200390161.

    Article  Google Scholar 

  58. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

  59. Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. http://avogadro.cc/

  60. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific and Technical Research Council of Turkey (TBAG-112T884). AUI thanks to TUBITAK for doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yilmaz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, M., Inal, A.U. & Sari, S. Microwave assisted synthesis and AChE inhibition studies of novel thiazolo and thiadiazolo [3,2-a]pyrimidinone fused dihydrofuran compounds. Med Chem Res 32, 957–974 (2023). https://doi.org/10.1007/s00044-023-03044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03044-8

Keywords

Navigation