Skip to main content
Log in

Synthesis and biological evaluation of sulfamate derivatives as inhibitors of carbonic anhydrases II and IX

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inhibition of carbonic anhydrases is a potential avenue for treatment of various pathological conditions such as cancer, glaucoma, epileptic seizures, obesity, and altitude sickness. In this study, a series of 4-benzamidophenyl sulfamate derivatives were synthesized and tested against two carbonic anhydrase isoforms namely, carbonic anhydrase II (CA II) and carbonic anhydrase IX (CA IX). All the synthesized compounds inhibited the activity of both isoforms CA II and CA IX at micromolar IC50 concentrations. Compound 1n was found to be the most potent against CA II with an IC50 value of 0.78 μM, whereas compound 1f was the most potent inhibitor against CA IX with an IC50 value of 0.34 μM. Molecular modeling studies of the most potent compounds revealed a network of interactions with important amino acids residues in the active sites of CA II and CA IX.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Supuran CT. Emerging role of carbonic anhydrase inhibitors. Clin Sci. 2021;135:1233–49.

    Article  CAS  Google Scholar 

  2. Supuran CT. Carbonic anhydrase inhibitors. Bioorg Med. Chem Lett. 2010;20:3467–74.

    Article  CAS  PubMed  Google Scholar 

  3. Abdel-Mohsen HT, et al. New thiopyrimidine-benzenesulfonamide conjugates as selective carbonic anhydrase II inhibitors: synthesis, in vitro biological evaluation, and molecular docking studies. Bioorg Med Chem. 2020;28:115329.

    Article  CAS  PubMed  Google Scholar 

  4. Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016;473:2023–32.

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, et al. Catalysis and pH control by membrane-associated carbonic anhydrase IX in MDA-MB-231 breast cancer cells. J Biol Chem. 2011;286:15789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mahon BP, et al. The structure of carbonic anhydrase IX is adapted for low-pH catalysis. Biochemistry. 2016;55:4642–53.

    Article  CAS  PubMed  Google Scholar 

  7. Becker HM, Deitmer JW. Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO 3-cotransporter. J Biol Chem. 2007;282:13508–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kirkpatrick JP, et al. Elevated CAIX expression is associated with an increased risk of distant failure in early-stage cervical cancer. Biomark Insights. 2008;3:BMI. S570.

    Article  Google Scholar 

  9. Becker HM, Deitmer JW. Proton transport in cancer cells: the role of carbonic anhydrases. Int J Mol Sci. 2021;22:3171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8:56–61.

    Article  CAS  PubMed  Google Scholar 

  11. Parks SK, Chiche J, Pouyssegur J. pH control mechanisms of tumor survival and growth. J Cell Physiol. 2011;226:299–308.

    Article  CAS  PubMed  Google Scholar 

  12. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168–81.

    Article  CAS  PubMed  Google Scholar 

  13. Thiry A, et al. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem. 2007;7:855–64.

    Article  CAS  PubMed  Google Scholar 

  14. Kivelä AJ, et al. Expression of transmembrane carbonic anhydrase isoenzymes IX and XII in normal human pancreas and pancreatic tumours. Histochem Cell Biol. 2000;114:197–204.

    Article  PubMed  Google Scholar 

  15. Kummola L, et al. Expression of a novel carbonic anhydrase, CA XIII, in normal and neoplastic colorectal mucosa. BMC Cancer. 2005;5:1–7.

    Article  Google Scholar 

  16. Barnett DH, et al. Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res. 2008;68:3505–15.

    Article  CAS  PubMed  Google Scholar 

  17. Kaar JL, et al. Towards improved artificial lungs through biocatalysis. Biomaterials. 2007;28:3131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bond GM, et al. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels. 2001;15:309–16.

    Article  CAS  Google Scholar 

  19. Jakubowski, M., E. Szahidewicz-Krupska, and A. Doroszko, The human carbonic anhydrase II in platelets: an underestimated field of its activity. BioMed Res Int. 2018; 2018:4548353.

  20. George RF, et al. Synthesis and selective inhibitory effects of some 2-oxindole benzenesulfonamide conjugates on human carbonic anhydrase isoforms CA I, CA II, CA IX and CAXII. Bioorg Chem. 2020;95:103514.

    Article  CAS  PubMed  Google Scholar 

  21. Petrenko M, et al. Combined 3-O-acetylbetulin treatment and carbonic anhydrase IX inhibition results in additive effects on human breast cancer cells. Chem-Biol Interact. 2021;333:109326.

    Article  CAS  PubMed  Google Scholar 

  22. Ali M, et al. Benzylaminoethyureido-tailed benzenesulfonamides: Design, synthesis, kinetic and X-ray investigations on human carbonic anhydrases. Int J Mol Sci. 2020;21:2560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hou R, et al. Zinc enzymes in medicinal chemistry. Eur J Med Chem. 2021;226:113877.

    Article  CAS  PubMed  Google Scholar 

  24. Bozdag M, et al. N-aryl-N’-ureido-O-sulfamates: Potent and selective inhibitors of the human Carbonic Anhydrase VII isoform with neuropathic pain relieving properties. Bioorg Chem. 2019;89:103033.

    Article  CAS  PubMed  Google Scholar 

  25. Supuran CT. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J Exp Pharmacol. 2020;12:603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moi D, et al. Structure-activity relationship with pyrazoline-based aromatic sulfamates as carbonic anhydrase isoforms I, II, IX and XII inhibitors: Synthesis and biological evaluation. Eur J Med Chem. 2019;182:111638.

    Article  CAS  PubMed  Google Scholar 

  27. Daryadel S, et al. Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Arch Pharm. 2018;351:1800209.

    Article  Google Scholar 

  28. Nocentini A, et al. Discovery of thiazolin-4-one-based aromatic sulfamates as a new class of carbonic anhydrase isoforms I, II, IV, and IX inhibitors. Bioorg Chem. 2018;77:293–9.

    Article  CAS  PubMed  Google Scholar 

  29. Williams KJ, Gieling RG. Preclinical evaluation of ureidosulfamate carbonic anhydrase IX/XII inhibitors in the treatment of cancers. Int J Mol Sci. 2019;20:6080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Othman IMM, et al. Toward a treatment of antibacterial and antifungal infections: Design, synthesis and in vitro activity of novel arylhydrazothiazolylsulfonamides analogues and their insight of DFT, docking and molecular dynamic simulations. J Mol Struct. 2021;1243:130862.

    Article  CAS  Google Scholar 

  31. Ezugwu JA, et al. Design, Synthesis, Molecular Docking, Molecular Dynamics and In Vivo Antimalarial Activity of New Dipeptide-Sulfonamides. ChemistrySelect. 2022;7:e202103908.

    Article  CAS  Google Scholar 

  32. Rudrapal, M, et al., Analgesic and Anti-Inflammatory Potential of Indole Derivatives. Polycyclic Aromatic Compounds. https://www.tandfonline.com/doi/full/10.1080/10406638.2022.2139733?scroll=top&needAccess=true&role=tab.

  33. El-Gamal MI, et al. A new series of aryl sulfamate derivatives: design, synthesis, and biological evaluation. Bioorg Med Chem. 2020;28:115406.

    Article  CAS  PubMed  Google Scholar 

  34. Zaib S, et al. New aminobenzenesulfonamide–thiourea conjugates: Synthesis and carbonic anhydrase inhibition and docking studies. Eur J Med Chem. 2014;78:140–50.

    Article  CAS  PubMed  Google Scholar 

  35. MOE (Molecular Operating Environment) Version 2019.0201. Chemical Computing Group, (CCG).

  36. LeadIT version 2.3.2; BioSolveIT GmbH, Sankt Augustin, Germany, 2017.

  37. Dassault Syst’emes BIOVIA, Discovery Studio Modeling Environment, Release 2017, Dassault Syst’emes, San Diego, 2016.

  38. Bowers, K.J, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 2006. IEEE.

  39. Shivakumar D, et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput. 2010;6:1509–19.

    Article  CAS  PubMed  Google Scholar 

  40. Barclay PL, Zhang DZ. Periodic boundary conditions for arbitrary deformations in molecular dynamics simulations. J Comput. Phys. 2021;435:110238.

    Article  CAS  Google Scholar 

  41. Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101:4177–89.

    Article  CAS  Google Scholar 

  42. Luty BA, et al. A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol Simul. 1994;14:11–20.

    Article  CAS  Google Scholar 

  43. Humphreys DD, Friesner RA, Berne BJ. A multiple-time-step molecular dynamics algorithm for macromolecules. J Phys Chem A. 1994;98:6885–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge University of Sharjah, United Arab Emirates, for financially supporting this project (grant No. 2201110159 & Drug Design and Discovery Research Group operational fund). The authors gratefully acknowledge the financial support for this research provided by the Higher Education Commission of Pakistan (HEC) via NRPU project No. 20-15846/NRPU/R&D/HEC/2021, German-Pakistani Research Collaboration Programme and Equipment Grant funded by DAAD, Germany.

Funding

This study was funded by University of Sharjah, United Arab Emirates (grant No. 2201110159 & Drug Design and Discovery Research Group operational fund). The authors gratefully acknowledge the financial support for this research provided by the Higher Education Commission of Pakistan (HEC) via NRPU project No. 20-15846/NRPU/R&D/HEC/2021, German-Pakistani Research Collaboration Programme and Equipment Grant funded by DAAD, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamshed Iqbal or Mohammed I. El-Gamal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

All the authors have read the article content and agree on it. They also agree on submitting it to Medicinal Chemistry Research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, S., Ullah, S., Zaraei, SO. et al. Synthesis and biological evaluation of sulfamate derivatives as inhibitors of carbonic anhydrases II and IX. Med Chem Res 32, 869–883 (2023). https://doi.org/10.1007/s00044-023-03043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03043-9

Keywords

Navigation