Skip to main content
Log in

Optimization of the dipeptide motifs in the PSMA ligands linker structure: synthesis and in vitro evaluation

  • Brief Report
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

An improved series of ligands targeting prostatic specific membrane antigen has been reported. Varying compounds and their biological parameters were due to changes in the linker structure. Highly selective compounds with nanomolar IC50 values were obtained. As an example, a conjugate with Sulfo-Cy5 and MMAE was obtained and pre-studied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020 Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209–49. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Jiao D, Li Y, Yang F, Han D, Wu J, Shi S, et al. Expression of prostate-specific membrane antigen in tumor-associated vasculature predicts poor prognosis in hepatocellular carcinoma. Clin Transl Gastroenterol. 2019;10:1–7. https://doi.org/10.14309/ctg.0000000000000041

    Article  Google Scholar 

  3. Sartor O, Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177–PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl J Med. 2021;385:1091–103. https://doi.org/10.1056/nejmoa2107322

    Article  Google Scholar 

  4. Barinka C, Novakova Z, Hin N, Bím D, Ferrari DV, Duvall B, et al. Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors. Bioorg Med Chem. 2019;27:255–64. https://doi.org/10.1016/j.bmc.2018.11.022

    Article  Google Scholar 

  5. Chi K, Protheroe A, Rodriguez Antolin A, Facchini G, Suttmann H, Matsubara N, et al. Benefits of abiraterone acetate plus prednisone (AA+P) when added to androgen deprivation therapy (ADT) in LATITUDE on patient (Pt) reported outcomes (PRO). Ann Oncol. 2017;28:v269. https://doi.org/10.1093/annonc/mdx370

    Article  Google Scholar 

  6. Choy CJ, Ling X, Geruntho JJ, Beyer SK, Latoche JD, Langton-Webster B, et al. 177Lu-labeled phosphoramidate-based PSMA inhibitors: the effect of an albumin binder on biodistribution and therapeutic efficacy in prostate tumor-bearing mice. Theranostics 2017;7:1928–39. https://doi.org/10.7150/thno.18719

    Article  Google Scholar 

  7. Ahmadzadehfar H, Azgomi K, Hauser S, Wei X, Yordanova A, Gaertner FC, et al. 68Ga-PSMA-11 PET as a gatekeeper for the treatment of metastatic prostate cancer with 223Ra: proof of concept. J Nucl Med. 2017;58:438–44. https://doi.org/10.2967/jnumed.116.178533

    Article  Google Scholar 

  8. Neuman BP, Eifler JB, Castanares M, Chowdhury WH, Chen Y, Mease RC, et al. Real-time, near-infrared fluorescence imaging with an optimized dye/light source/camera combination for surgical guidance of prostate cancer. Clin Cancer Res. 2015;21:771–80. https://doi.org/10.1158/1078-0432.CCR-14-0891

    Article  Google Scholar 

  9. Kularatne SA, Thomas M, Myers CH, Gagare P, Kanduluru AK, Crian CJ, et al. Evaluation of novel prostate-specific membrane antigen-targeted near-infrared imaging agent for fluorescence-guided surgery of prostate cancer. Clin Cancer Res. 2019;25:177–87. https://doi.org/10.1158/1078-0432.CCR-18-0803

    Article  Google Scholar 

  10. Boinapally S, Ahn HH, Cheng B, Brummet M, Nam H, Gabrielson KL, et al. A prostate-specific membrane antigen (PSMA)-targeted prodrug with a favorable in vivo toxicity profile. Sci Rep. 2021;11:1–10. https://doi.org/10.1038/s41598-021-86551-1

    Article  Google Scholar 

  11. Sengupta S, Krishnan MA, Pandit A, Dudhe P, Sharma R, Chelvam V. Tyrosine-based asymmetric urea ligand for prostate carcinoma: tuning biological efficacy through in silico studies. Bioorg Chem. 2019;91:103154. https://doi.org/10.1016/j.bioorg.2019.103154

    Article  Google Scholar 

  12. Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S, et al. Ga- and Lu-labeled PSMA I & T: optimization of a PSMA targeted theranostic concept and first proof of concept human studies. J Nucl Med. 2015;56:1169–76. https://doi.org/10.2967/jnumed.115.158550

    Article  Google Scholar 

  13. Machulkin AE, Shafikov RR, Uspenskaya AA, Petrov SA, Ber AP, Skvortsov DA, et al. Synthesis and biological evaluation of PSMA ligands with aromatic residues and fluorescent conjugates based on them. J Med Chem. 2021;64:4532–52. https://doi.org/10.1021/acs.jmedchem.0c01935

    Article  Google Scholar 

  14. Uspenskaya AA, Nimenko EA, Machulkin AE, Beloglazkina EK, Majouga AG. The importance of linkers in the structure of PSMA ligands. Curr Med Chem. 2021;28:1–31. https://doi.org/10.2174/0929867328666210804092200

    Article  Google Scholar 

  15. El-Faham A, Albericio F. Peptide coupling reagents, more than a letter soup. Chem Rev. 2011;111:6557–602. https://doi.org/10.1021/cr100048w

    Article  Google Scholar 

  16. East JE, Carter KM, Kennedy PC, Schulte NA, Toews ML, Lynch KR, et al. Development of a phosphatase-resistant, l-tyrosine derived LPA1/LPA3 dual antagonist. Medchemcomm 2011;2:325–30. https://doi.org/10.1039/c0md00273a

    Article  Google Scholar 

  17. Schmidt A. Structural modifications of PSMA ligands to optimize their pharmacokinetics. Munich: Technischen Universität München; 2017.

    Google Scholar 

  18. Machulkin AE, Skvortsov DA, Ivanenkov YA, Ber AP, Kavalchuk MV, Aladinskaya AV, et al. Synthesis and biological evaluation of PSMA-targeting paclitaxel conjugates. Bioorg Med Chem Lett. 2019;29:2229–35. https://doi.org/10.1016/j.bmcl.2019.06.035

    Article  Google Scholar 

  19. Petrov SA, Machulkin AE, Uspenskaya AA, Zyk NY, Nimenko EA, Garanina AS, et al. Polypeptide-based molecular platform and its docetaxel/sulfo-Cy5-containing conjugate for targeted delivery to prostate specific membrane antigen. Molecules 2020;25:5784.

    Article  Google Scholar 

  20. Wang X, Shirke A, Walker E, Sun R, Ramamurthy G, Wang J, et al. Small molecule-based prodrug targeting prostate specific membrane antigen for the treatment of prostate cancer. Cancers (Basel). 2021;13:1–21.

    Google Scholar 

  21. Machulkin AE, Uspenskaya AA, Zyk NU, Nimenko EA, Ber AP, Petrov SA, et al. Synthesis, characterization, and preclinical evaluation of a small-molecule prostate-specific membrane antigen-targeted monomethyl auristatin E conjugate. J Med Chem. 2021;64:17123–45. https://doi.org/10.1021/acs.jmedchem.1c01157

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out with the financial support of Russian Science Foundation Grant No. 22-15-00098 (PSMA ligands design, synthesis and physico-chemical characterization) and Russian Foundation for Basic Research, Grant No. 20-34-90150 (inhibition of the N-acetylaspartylglutamate cleavage).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia A. Uspenskaya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, A.A., Nimenko, E.A., Shafikov, R.R. et al. Optimization of the dipeptide motifs in the PSMA ligands linker structure: synthesis and in vitro evaluation. Med Chem Res 32, 32–37 (2023). https://doi.org/10.1007/s00044-022-03002-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-03002-w

Keywords

Navigation