Skip to main content

Advertisement

Log in

A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Neurotoxicity occurs in Alzheimer’s disease due to the formation of Amyloid-β peptide aggregates and damage caused by oxidative stress. Upon aggregation of amyloid-β peptides, oxidative stress is generated; however, oxidative stress can also promote excess amyloid-β peptide production and aggregate formation. Currently available therapeutic options are little effective against Alzheimer’s disease, and they cannot stop the progression of the disease. As a new therapeutic alternative rather than inhibiting amyloid-β peptide production, inhibiting amyloid-β peptide aggregation along with oxidative stress management may be more effective considering that these processes are not typically associated with normal physiology. In addition to antiamyloidogenic properties, flavonoids exhibit antioxidant properties as well. The structural features of flavonoids that are needed for these two activities are similar. Even oxidized flavonoids are more likely to inhibit the aggregation of Amyloid-β peptides. Thus, the discovery of flavonoids with superior antioxidant activity could lead to the identification of better aggregation inhibitors. Despite flavonoids having the potential to be used as drugs, there are no medications that can be used to treat Alzheimer’s disease. This review describes how the structural features of different flavonoids affect their antiamyloidogenic and antioxidant activities, which may help develop future therapeutics for Alzheimer’s disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–1855. https://doi.org/10.1126/SCIENCE.1566067.

    Article  Google Scholar 

  2. Müller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci. 2017;18:281–98. https://doi.org/10.1038/nrn.2017.29.

    Article  Google Scholar 

  3. Jarrett JT, Lansbury PT. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell. 1993;73:1055–8. https://doi.org/10.1016/0092-8674(93)90635-4.

    Article  Google Scholar 

  4. Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H. Interaction between Aβ(1-42) and Aβ(1-40) in alzheimer’s β-amyloid fibril formation in vitro. Biochemistry. 1999;38:15514–21. https://doi.org/10.1021/bi991161m.

    Article  Google Scholar 

  5. Morita M, Hamada T, Tendo Y, Hata T, Vestergaard MC, Takagi M. Selective localization of Alzheimer’s amyloid beta in membrane lateral compartments. Soft Mat. 2012;8:2816–19. https://doi.org/10.1039/c2sm07185a. 2816–2819.

    Article  Google Scholar 

  6. Snow AD, Wight TN. Proteoglycans in the pathogenesis of Alzheimer’s disease and other amyloidoses. Neurobiol Aging. 1989;10:481–97. https://doi.org/10.1016/0197-4580(89)90108-5.

    Article  Google Scholar 

  7. Terzi E, Hölzemann G, Seelig J. Self-association of β-amyloid peptide (1-40) in solution and binding to lipid membranes. J Mol Biol. 1995;252:633–42. https://doi.org/10.1006/jmbi.1995.0525.

    Article  Google Scholar 

  8. Harper JD, Lansbury PT. Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem. 1997;66:385–407. https://doi.org/10.1146/annurev.biochem.66.1.385.

    Article  Google Scholar 

  9. Jarrett JT, Berger EP, Lansbury PT. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 1993;32:4693–4697. https://doi.org/10.1021/bi00069a001.

    Article  Google Scholar 

  10. Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging. 2012;33:1484.e15–24. https://doi.org/10.1016/j.neurobiolaging.2011.12.020.

    Article  Google Scholar 

  11. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, et al. β-amyloid monomers are neuroprotective. J Neurosci. 2009;29:10582–7. https://doi.org/10.1523/JNEUROSCI.1736-09.2009.

    Article  Google Scholar 

  12. Murphy MP, LeVine H. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis. 2010;19:311–323. https://doi.org/10.3233/JAD-2010-1221.

    Article  Google Scholar 

  13. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006;572:477–492. https://doi.org/10.1113/jphysiol.2005.103754.

    Article  Google Scholar 

  14. Dahlgren KN, Manelli AM, Blaine Stine W, Baker LK, Krafft GA, Ladu MJ. Oligomeric and fibrillar species of amyloid-β peptides differentially affect neuronal viability. J Biol Chem. 2002;277:32046–53. https://doi.org/10.1074/jbc.M201750200.

    Article  Google Scholar 

  15. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 2007;8:101–12. https://doi.org/10.1038/nrm2101.

    Article  Google Scholar 

  16. Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M. The various aggregation states of β-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med. 2006;41:202–12. https://doi.org/10.1016/j.freeradbiomed.2006.01.021.

    Article  Google Scholar 

  17. Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, et al. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm Sin B. 2015;5:47–54. https://doi.org/10.1016/j.apsb.2014.12.003.

    Article  Google Scholar 

  18. Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med. 2012;2:a006379–79. https://doi.org/10.1101/cshperspect.a006379.

    Article  Google Scholar 

  19. Sagare AP, Bell RD, Zlokovic BV. Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease. J Alzheimers Dis. 2013;33:S87–100. https://doi.org/10.3233/JAD-2012-129037.

    Article  Google Scholar 

  20. Zou K, Gong JS, Yanagisawa K, Michikawa M. A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci. 2002;22:4833–4841. https://doi.org/10.1523/jneurosci.22-12-04833.2002.

    Article  Google Scholar 

  21. Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem. 2019;151:459–487. https://doi.org/10.1111/jnc.14589.

    Article  Google Scholar 

  22. Baruch-Suchodolsky R, Fischer B. Aβ40, either soluble or aggregated, is a remarkably potent antioxidant in cell-free oxidative systems. Biochemistry. 2009;48:4354–70. https://pubs.acs.org/doi/10.1021/bi802361k.

    Article  Google Scholar 

  23. Butterfield DA, Kanski J. Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev. 2001;122:945–962. https://doi.org/10.1016/S0047-6374(01)00249-4.

    Article  Google Scholar 

  24. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol Med Trends Mol Med. 2001;7:548–54. https://doi.org/10.1016/S1471-4914(01)02173-6.

    Article  Google Scholar 

  25. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging. 2002;23:655–64. https://doi.org/10.1016/S0197-4580(01)00340-2.

    Article  Google Scholar 

  26. Drake J, Link CD, Butterfield DA. Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid β-peptide (1-42) in a transgenic Caenorhabditis elegans model. Neurobiol Aging. 2003;24:415–20. https://doi.org/10.1016/S0197-4580(02)00225-7.

    Article  Google Scholar 

  27. Murray IVJ, Sindoni ME, Axelsen PH. Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochemistry. 2005;44:12606–13. https://doi.org/10.1021/bi050926p.

    Article  Google Scholar 

  28. Esterbauer H, Ramos P. Chemistry and pathophysiology of oxidation of LDL. Rev Physiol Biochem Pharm. 1996;127:31–64. https://doi.org/10.1007/bfb0048264.

    Article  Google Scholar 

  29. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72. https://doi.org/10.1021/cr200084z.

    Article  Google Scholar 

  30. Tamagno E, Bardini P, Obbili A, Vitali A, Borghi R, Zaccheo D, et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. Neurobiol Dis. 2002;10:279–27988. https://doi.org/10.1006/nbdi.2002.0515.

    Article  Google Scholar 

  31. Wang R, Wang S, Malter JS, Wang DS. Effects of HNE-modification induced by Aβ on neprilysin expression and activity in SH-SY5Y cells. J Neurochem. 2009;108:1072–82. http://doi.wiley.com/10.1111/j.1471-4159.2008.05855.x.

    Article  Google Scholar 

  32. Siegel SJ, Bieschke J, Powers ET, Kelly JW. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry. 2007;46:1503–10. https://doi.org/10.1021/bi061853s.

    Article  Google Scholar 

  33. Kummer MP, Hermes M, Delekarte A, Hammerschmidt T, Kumar S, Terwel D, et al. Nitration of tyrosine 10 critically enhances amyloid β aggregation and plaque formation. Neuron. 2011;71:833–44. https://doi.org/10.1016/j.neuron.2011.07.001.

    Article  Google Scholar 

  34. Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev. 2018;6:CD001190. https://doi.org/10.1002/14651858.CD001190.pub3.

    Article  Google Scholar 

  35. Birks JS. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;25:CD005593. https://doi.org/10.1002/14651858.CD005593.

    Article  Google Scholar 

  36. Khoury R, Rajamanickam J, Grossberg GT. An update on the safety of current therapies for Alzheimer’s disease: focus on rivastigmine. Ther Adv Drug Saf. 2018;9:171–8. https://doi.org/10.1177/2042098617750555.

    Article  Google Scholar 

  37. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–17. https://doi.org/10.1126/science.7046051.

    Article  Google Scholar 

  38. Lane RM, Potkin SG, Enz A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol. 2006;9:101–24. https://doi.org/10.1017/S1461145705005833.

    Article  Google Scholar 

  39. Pedersen WA, Kloczewiak MA, Blusztajn JK. Amyloid β-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A. 1996;93:8068–71. https://doi.org/10.1073/pnas.93.15.8068.

    Article  Google Scholar 

  40. Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered β-amyloid peptides involves cholinergic dysfunction. Brain Res. 1996;706:181–93. https://doi.org/10.1016/0006-8993(95)01032-7.

    Article  Google Scholar 

  41. McShane R, Westby MJ, Roberts E, Minakaran N, Schneider L, Farrimond LE, et al. Memantine for dementia. Cochrane Database Syst Rev. 2019;3:CD003154. https://doi.org/10.1002/14651858.CD003154.pub6.

    Article  Google Scholar 

  42. Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature. 2005;438:185–92. https://doi.org/10.1038/nature04089.

    Article  Google Scholar 

  43. Forsythe ID, Westbrook GL. Slow excitatory postsynaptic currents mediated by N‐methyl‐D‐aspartate receptors on cultured mouse central neurones. J Physiol. 1988;396:515–33. https://doi.org/10.1113/jphysiol.1988.sp016975.

    Article  Google Scholar 

  44. Lau CG, Takeuchi K, Rodenas-Ruano A, Takayasu Y, Murphy J, Bennett MV, et al. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans. 2009;37:1369–74. https://doi.org/10.1042/BST0371369.

    Article  Google Scholar 

  45. Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, Trullas R, et al. Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium. 2010;47:264–72. https://doi.org/10.1016/j.ceca.2009.12.010.

  46. Tamburri A, Dudilot A, Licea S, Bourgeois C, Boehm J. NMDA-receptor activation but not ion flux is required for amyloid-beta induced synaptic depression. PLoS One. 2013;8:e65350. https://doi.org/10.1371/journal.pone.0065350.

    Article  Google Scholar 

  47. Birnbaum JH, Bali J, Rajendran L, Nitsch RM, Tackenberg C. Calcium flux-independent NMDA receptor activity is required for Aβ oligomer-induced synaptic loss. Cell Death Dis. 2015;6:e1791–91. https://doi.org/10.1038/cddis.2015.160.

    Article  Google Scholar 

  48. Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R. Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One. 2015;10:e0144337. https://doi.org/10.1371/journal.pone.0144337.

    Article  Google Scholar 

  49. Buckley JS, Salpeter SR. A risk-benefit assessment of dementia medications: systematic review of the evidence. Drugs Aging. 2015;32:453–67. https://doi.org/10.1007/s40266-015-0266-9.

    Article  Google Scholar 

  50. Blanco-Silvente L, Castells X, Garre-Olmo J, Vilalta-Franch J, Saez M, Barceló MA, et al. Study of the strength of the evidence and the redundancy of the research on pharmacological treatment for Alzheimer’s disease: a cumulative meta-analysis and trial sequential analysis. Eur J Clin Pharmacol. 2019;75:1659–67. https://doi.org/10.1007/s00228-019-02742-w.

    Article  Google Scholar 

  51. Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: current status and future directions in treating Alzheimer’s disease. Med Res Rev. 2020;40:339–84. https://doi.org/10.1002/med.21622.

    Article  Google Scholar 

  52. Maia MA, Sousa E. BACE-1 and γ-secretase as therapeutic targets for alzheimer’s disease. Pharmaceuticals. 2019;12:41. https://doi.org/10.3390/ph12010041.

    Article  Google Scholar 

  53. Uddin MS, Kabir MT, Jeandet P, Mathew B, Ashraf GM, Perveen A, et al. Novel anti-Alzheimer’s therapeutic molecules targeting amyloid precursor protein processing. Oxid Med Cell Longev. 2020;2020:7039138. https://doi.org/10.1155/2020/7039138.

    Article  Google Scholar 

  54. Zhou L, Barão S, Laga M, Bockstael K, Borgers M, Gijsen H, et al. The neural cell adhesion molecules L1 and CHL1 are cleaved by BACE1 protease in vivo. J Biol Chem. 2012;287:25927–40. https://doi.org/10.1074/jbc.M112.377465.

    Article  Google Scholar 

  55. Zhu K, Peters F, Filser S, Herms J. Consequences of pharmacological BACE inhibition on synaptic structure and function. Biol Psychiatry. 2018;84:478–87. https://doi.org/10.1016/j.biopsych.2018.04.022.

    Article  Google Scholar 

  56. Svedružić ŽM, Popović K, Šendula-Jengić V. Modulators of γ-secretase activity can facilitate the toxic side-effects and pathogenesis of Alzheimer’s disease. PLoS One. 2013;8:e50759. https://doi.org/10.1371/journal.pone.0050759.

    Article  Google Scholar 

  57. Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP, Abrahamson EE, et al. Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci. 2005;25:10598–606. https://doi.org/10.1523/JNEUROSCI.2990-05.2005.

    Article  Google Scholar 

  58. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N. Engl J Med. 2006;355:2652–63. https://doi.org/10.1056/NEJMOA054625.

    Article  Google Scholar 

  59. Nie Q, Du XG, Geng MY. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. Acta Pharmacol Sin. 2011;32:545–51. https://doi.org/10.1038/aps.2011.14.

    Article  Google Scholar 

  60. Jokar S, Khazaei S, Behnammanesh H, Shamloo A, Erfani M, Beiki D, et al. Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy. Biophy Rev. 2019;11:901–25. https://doi.org/10.1007/s12551-019-00606-2.

    Article  Google Scholar 

  61. Miners JS, Barua N, Kehoe PG, Gill S, Love S. Aβ-degrading enzymes: potential for treatment of alzheimer disease. J Neuropathol Exp Neurol. 2011;70:944–59. https://doi.org/10.1097/NEN.0b013e3182345e46.

    Article  Google Scholar 

  62. Tiwari SC, Soni RM. Alzheimer’s disease pathology and oxidative stress: possible therapeutic. J Alzheimers Dis Park. 2014;4:1–10. https://doi.org/10.4172/2161-0460.1000162.

    Article  Google Scholar 

  63. Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules. 2019;24:1–17. https://doi.org/10.3390/molecules24234410.

    Article  Google Scholar 

  64. Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology. 2000;153:83–104. https://doi.org/10.1016/S0300-483X(00)00306-1.

    Article  Google Scholar 

  65. Kohen R. Skin antioxidants: Their role in aging and in oxidative stress - new approaches for their evaluation. Biomed Pharmacother. 1999;53:181–92. https://doi.org/10.1016/S0753-3322(99)80087-0.

    Article  Google Scholar 

  66. Kohen R, Vellaichamy E, Hrbac J, Gati I, Tirosh O. Quantification of the overall reactive oxygen species scavenging capacity of biological fluids and tissues. Free Radic Biol Med. 2000;28:871–9. https://doi.org/10.1016/S0891-5849(00)00191-X.

    Article  Google Scholar 

  67. Singh SK, Srikrishna S, Castellani RJ, Perry G. Antioxidants in the prevention and treatment of Alzheimer’s disease. In Nutritional Antioxidant Therapies: Treatments and Perspectives; Springer International Publishing, 2017;523–553. https://doi.org/10.1007/978-3-319-67625-8_20.

  68. Song K, Li Y, Zhang H, An N, Wei Y, Wang L, et al. Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxid Med Cell Longev. 2020;2020:1–27. https://doi.org/10.1155/2020/4356386.

    Article  Google Scholar 

  69. Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem. 2003;87:172–81. https://doi.org/10.1046/j.1471-4159.2003.01976.x.

    Article  Google Scholar 

  70. Kim H, Park BS, Lee KG, Choi CY, Jang SS, Kim YH, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem. 2005;53:8537–41. https://doi.org/10.1021/jf051985c.

    Article  Google Scholar 

  71. Akaishi T, Morimoto T, Shibao M, Watanabe S, Sakai-Kato K, Utsunomiya-Tate N, et al. Structural requirements for the flavonoid fisetin in inhibiting fibril formation of amyloid β protein. Neurosci Lett. 2008;444:280–5. https://doi.org/10.1016/j.neulet.2008.08.052.

    Article  Google Scholar 

  72. Lee HJ, Kerr RA, Korshavn KJ, Lee J, Kang J, Ramamoorthy A, et al. Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation. Inorg Chem Front. 2016;3:381–92. https://doi.org/10.1039/c5qi00219b.

    Article  Google Scholar 

  73. Sato M, Murakami K, Uno M, Nakagawa Y, Katayama S, Akagi K, et al. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the lys residues. J Biol Chem. 2013;288:23212–24. https://doi.org/10.1074/jbc.M113.464222.

    Article  Google Scholar 

  74. Toda T, Shimizu T, Sunagawa T, Kanda T, Tagashira M, Shirasawa T. Apple procyanidins suppress amyloid β-protein aggregation. Biochem Res Int. 2011;2011:784698. https://doi.org/10.1155/2011/784698.

    Article  Google Scholar 

  75. Thapa A, Woo ER, Chi EY, Sharoar MG, Jin HG, Shin SY, et al. Biflavonoids are superior to monoflavonoids in inhibiting amyloid-β toxicity and fibrillogenesis via accumulation of nontoxic oligomer-like structures. Biochemistry. 2011;50:2445–55. https://doi.org/10.1021/bi101731d.

    Article  Google Scholar 

  76. Bastianetto S, Yao ZX, Papadopoulos V, Quirion R. Neuroprotective effects of green and black teas and their catechin gallate esters against β-amyloid-induced toxicity. Eur J Neurosci. 2006;23:55–64. https://doi.org/10.1111/j.1460-9568.2005.04532.x.

    Article  Google Scholar 

  77. Liu Y, Liu Y, Wang S, Dong S, Chang P, Jiang Z. Structural characteristics of (−)-epigallocatechin-3-gallate inhibiting amyloid Aβ42 aggregation and remodeling amyloid fibers. RSC Adv. 2015;5:62402–13. https://doi.org/10.1039/c5ra09608a.

    Article  Google Scholar 

  78. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63:1035–42. https://doi.org/10.1021/np9904509.

    Article  Google Scholar 

  79. Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L. Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta - Gen Subj. 2005;1721:174–84. https://doi.org/10.1016/j.bbagen.2004.11.001.

    Article  Google Scholar 

  80. Dutta MS, Mahapatra P, Ghosh A, Basu S. Estimation of the reducing power and electrochemical behavior of few flavonoids and polyhydroxybenzophenones substantiated by bond dissociation energy: a comparative analysis. Mol. Divers. 2021; https://doi.org/10.1007/s11030-021-10232-4.

  81. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Van Poel B, et al. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod. 1998;61:71–6. https://doi.org/10.1021/np970237h.

    Article  Google Scholar 

  82. Treml J, Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Compr Rev Food Sci Food Saf. 2016;15:720–38. https://doi.org/10.1111/1541-4337.12204.

    Article  Google Scholar 

  83. Haenen GRMM, Bast A. Nitric oxide radical scavenging of flavonoids. Methods Enzymol. 1999;301:490–503. https://doi.org/10.1016/S0076-6879(99)01112-X.

    Article  Google Scholar 

  84. Kobayashi S, Kanai S. Superoxide scavenging effects of some novel bis-ligands and their solvated metal complexes prepared by the reaction of ligands with aluminum, copper and lanthanum ions. Molecules. 2013;18:6128–41. https://doi.org/10.3390/molecules18066128.

    Article  Google Scholar 

  85. Heijnen CGM, Haenen GRMM, Oostveen RM, Stalpers EM, Bast A. Protection of flavonoids against lipid peroxidation: the structure activity relationship revisited. Free Radic Res. 2002;36:575–81. https://doi.org/10.1080/10715760290025951.

    Article  Google Scholar 

  86. Wang N, Li D, Lu NH, Yi L, Huang XW, Gao ZH. Peroxynitrite and hemoglobin-mediated nitrative/oxidative modification of human plasma protein: effects of some flavonoids. J Asian Nat Prod Res. 2010;12:257–64. https://doi.org/10.1080/10286021003620226.

    Article  Google Scholar 

  87. Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicals. Cancer Lett. 1997;119:99–107. https://doi.org/10.1016/S0304-3835(97)00261-9.

    Article  Google Scholar 

  88. He J, Xu L, Yang L, Wang X. Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity. Med Sci Monit. 2018;24:8198–206. https://doi.org/10.12659/MSM.911175.

    Article  Google Scholar 

  89. Uriarte-Pueyo I, Calvo MI. (2011) Flavonoids as acetylcholinesterase inhibitors. Curr Med Chem. 2011;18:5289–302. https://doi.org/10.2174/092986711798184325.

    Article  Google Scholar 

  90. Balkis A, Tran K, Lee YZ, Ng K. Screening flavonoids for inhibition of acetylcholinesterase identified Baicalein as the most potent inhibitor. J Agric Sci. 2015;7:26–35. https://doi.org/10.5539/JAS.V7N9P26.

    Article  Google Scholar 

  91. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci. 1998;158:47–52. https://doi.org/10.1016/S0022-510X(98)00092-6.

    Article  Google Scholar 

  92. James SA, Churches QI, De Jonge MD, Birchall IE, Streltsov V, McColl G, et al. Iron, Copper, and Zinc concentration in Aβ plaques in the APP/PS1 mouse model of Alzheimer’s disease correlates with metal levels in the surrounding neuropil. Acs Chem Neurosci. 2017;8:629–37. https://doi.org/10.1021/ACSCHEMNEURO.6B00362.

    Article  Google Scholar 

  93. Liu Y, Nguyen M, Robert A, Meunier B. Metal ions in Alzheimer’s disease: a key role or not? Acc Chem Res. 2019;52:2026–35. https://doi.org/10.1021/ACS.ACCOUNTS.9B00248.

    Article  Google Scholar 

  94. Mira L, Fernandez MT, Santos M, Rocha R, Florêncio MH, Jennings KR. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res. 2002;36:1199–1208. https://doi.org/10.1080/1071576021000016463.

    Article  Google Scholar 

  95. Detoma AS, Choi JS, Braymer JJ, Lim MH. Myricetin: a naturally occurring regulator of metal-induced amyloid-β aggregation and neurotoxicity. ChemBioChem. 2011;12:1198–201. https://doi.org/10.1002/CBIC.201000790.

    Article  Google Scholar 

  96. Hyung SJ, Detoma AS, Brender JR, Lee S, Vivekanandan S, Kochi A, et al. Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species. Proc Natl Acad Sci U S A. 2013;110:3743–8. https://doi.org/10.1073/PNAS.1220326110/-/DCSUPPLEMENTAL/PNAS.201220326SI.PDF.

    Article  Google Scholar 

  97. Calcul L, Zhang B, Jinwal UK, Dickey CA, Baker BJ. Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med Chem. 2012;4:1751–61. https://doi.org/10.4155/FMC.12.124.

    Article  Google Scholar 

  98. Hole KL, Williams RJ. Flavonoids as an intervention for Alzheimer’s disease: progress and hurdles towards defining a mechanism of action. Brain Plast. 2020;6:167–92. https://doi.org/10.3233/BPL-200098.

    Article  Google Scholar 

  99. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013;126:479–97. https://doi.org/10.1007/S00401-013-1177-7.

    Article  Google Scholar 

  100. Maccioni RB, Rojo LE, Fernández JA, Kuljis RO. The role of neuroimmunomodulation in Alzheimer’s disease. Ann N. Y Acad Sci. 2009;1153:240–6. https://doi.org/10.1111/J.1749-6632.2008.03972.X.

    Article  Google Scholar 

  101. Morales I, Farías G, MacCioni RB. Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. Neuroimmunomodulation. 2010;17:202–4. https://doi.org/10.1159/000258724.

    Article  Google Scholar 

  102. Maccioni RB, González A, Andrade V, Cortés N, Tapia JP, Guzmán-Martínez L. Alzheimer´s disease in the perspective of neuroimmunology. Open Neurol J. 2018;12:50–6. https://doi.org/10.2174/1874205X01812010050.

    Article  Google Scholar 

  103. Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ. Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation. 2011;8:79. https://doi.org/10.1186/1742-2094-8-79.

    Article  Google Scholar 

  104. Long HZ, Zhou ZW, Cheng Y, Luo HY, Li FJ, Xu SG, et al. The role of microglia in Alzheimer’s disease from the perspective of immune inflammation and iron metabolism. Front Aging Neurosci. 2022;14:888989. https://doi.org/10.3389/FNAGI.2022.888989.

    Article  Google Scholar 

  105. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy - Drug Targets. 2009;8:229–35.

    Article  Google Scholar 

  106. Spagnuolo C, Moccia S, Russo GL. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur J Med Chem. 2018;153:105–15. https://doi.org/10.1016/j.ejmech.2017.09.001.

    Article  Google Scholar 

  107. Tunon M, Garcia-Mediavilla M, Sanchez-Campos S, Gonzalez-Gallego J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr Drug Metab. 2009;10:256–71. https://doi.org/10.2174/138920009787846369.

    Article  Google Scholar 

  108. Choi S-M, Kim BC, Cho Y-H, Choi K-H, Chang J, Park M-S, et al. Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J. 2014;50:45–51. https://doi.org/10.4068/cmj.2014.50.2.45.

    Article  Google Scholar 

  109. Wright JS. Predicting the antioxidant activity of curcumin and curcuminoids. J Mol Struct (Theochem). 2002;591:207–17. https://doi.org/10.1016/S0166-1280(02)00242-7.

    Article  Google Scholar 

  110. Hao D-C. Drug metabolism and disposition diversity of ranunculales phytometabolites. In: Ranunculales Medicinal Plants. Elsevier. 2019;175–221. https://doi.org/10.1016/b978-0-12-814232-5.00005-8.

  111. Vijayakumar BG, Ramesh D, Joji A, Jayachandra Prakasan J, Kannan T. In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. Eur. J. Pharmacol. 2020;886. https://doi.org/10.1016/J.EJPHAR.2020.173448.

  112. Mizuno M, Mori K, Misawa T, Takaki T, Demizu Y, Shibanuma M, et al. Inhibition of β-amyloid–induced neurotoxicity by planar analogues of procyanidin B3. Bioorg Med Chem Lett. 2019;29:2659–63. https://doi.org/10.1016/j.bmcl.2019.07.038.

    Article  Google Scholar 

  113. Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, et al. Neuroprotection by flavonoids. Braz J Med Biol Res. 2003;36:1613–20. https://doi.org/10.1590/S0100-879X2003001200002.

    Article  Google Scholar 

  114. Pinheiro RGR, Granja A, Loureiro JA, Pereira MC, Pinheiro M, Neves AR, et al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur J Pharm Sci. 2020;148:105314. https://doi.org/10.1016/j.ejps.2020.105314.

  115. Ferri P, Angelino D, Gennari L, Benedetti S, Ambrogini P, Del Grande P, et al. Enhancement of flavonoid ability to cross the blood-brain barrier of rats by co-administration with α-tocopherol. Food Funct. 2015;6:394–400. https://doi.org/10.1039/c4fo00817k.

    Article  Google Scholar 

  116. Wei BB, Liu MY, Zhong X, Yao WF, Wei MJ. Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: pharmacokinetic and distribution analyses. Acta Pharmacol Sin. 2019;40:1490–500. https://doi.org/10.1038/s41401-019-0243-7.

    Article  Google Scholar 

  117. Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules. 2013;18:9949–65. https://doi.org/10.3390/MOLECULES18089949.

    Article  Google Scholar 

  118. Fu X, Zhang J, Guo L, Xu Y, Sun L, Wang S, et al. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharm Biochem Behav. 2014;126:122–30. https://doi.org/10.1016/J.PBB.2014.09.005.

    Article  Google Scholar 

  119. Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, et al. Protective effects of kaempferol (3,4′,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem. 2010;74:397–401. https://doi.org/10.1271/BBB.90585.

    Article  Google Scholar 

  120. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol. 2017;54:2269–85. https://doi.org/10.1007/S12035-016-9795-4.

    Article  Google Scholar 

  121. Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134–45. https://doi.org/10.1016/J.NEUROPHARM.2015.01.027.

    Article  Google Scholar 

  122. Ramezani M, Darbandi N, Khodagholi F, Hashemi A. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer’s disease. Neural Regen Res. 2016;11:1976–80. https://doi.org/10.4103/1673-5374.197141.

    Article  Google Scholar 

  123. Inoue T, Saito S, Tanaka M, Yamakage H, Kusakabe T, Shimatsu A, et al. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A. 2019;116:10031–8. https://doi.org/10.1073/PNAS.1901659116.

    Article  Google Scholar 

  124. Sun P, Yin JB, Liu LH, Guo J, Wang SH, Qu CH, et al. Protective role of dihydromyricetin in Alzheimer’s disease rat model associated with activating AMPK/SIRT1 signaling pathway. Biosci Rep. 2019;39:20180902. https://doi.org/10.1042/BSR20180902/195.

    Article  Google Scholar 

  125. Cox CJ, Choudhry F, Peacey E, Perkinton MS, Richardson JC, Howlett DR, et al. Dietary (−)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing. Neurobiol Aging. 2015;36:178–87. https://doi.org/10.1016/J.NEUROBIOLAGING.2014.07.032.

    Article  Google Scholar 

  126. Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–87. https://doi.org/10.1016/J.BRAINRES.2008.02.107.

    Article  Google Scholar 

  127. Senolytic Therapy to Modulate Progression of Alzheimer’s Disease ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04063124.

  128. Senolytic Therapy to Modulate the Progression of Alzheimer’s Disease (SToMP-AD) Study ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04685590.

  129. Sunphenon EGCg (Epigallocatechin-Gallate) in the Early Stage of Alzheimer´s Disease ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00951834.

  130. Prevention of Cognitive Decline in ApoE4 Carriers With Subjective Cognitive Decline After EGCG and a Multimodal Intervention ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03978052.

  131. COcoa Supplement and Multivitamin Outcomes Study for the Mind ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03035201.

  132. Polyphenols and Risk of Dementia ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03286608.

Download references

Acknowledgements

MSD acknowledges Swami Vivekananda Merit-cum-means Scholarship scheme of Government of West Bengal for his fellowship. The author gratefully acknowledges Dr. Soumalee Basu of Department of Microbiology of University of Calcutta for sharing her knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu Sudan Dutta.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, M.S. A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease. Med Chem Res 32, 15–31 (2023). https://doi.org/10.1007/s00044-022-02990-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02990-z

Keywords

Navigation