Skip to main content

Advertisement

Log in

Effect of a hexacyclic triterpenic acid from Euscaphis japonica on the oleic acid induced HepG2 cellular model of non-alcoholic fatty liver disease

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease associated with hepatic lipid accumulation, insulin resistance, oxidative stress, and inflammation. The CFLAR-JNK pathway plays a decisive role in the development of NAFLD. EJ1 is a new hexacyclic triterpenic acid isolated from Euscaphis japonica, a traditional herbal medicine with anti-NAFLD effect. The present study was aimed to evaluate the hepatoprotective effect of EJ1 against NAFLD in vitro and the underlying mechanisms. The biochemical parameters related to lipid accumulation, insulin resistance, oxidative stress, and inflammation in oleic acid-induced HepG2 cellular model of NAFLD were measured. In this study, EJ1 was found to significantly decrease TG and TC contents. Meanwhile, EJ1 increased hepatocellular glucose uptake and improved insulin resistance by increasing the phosphorylation levels of pIRS1, pAKT and PI3K. Furthermore, EJ1 decreased the intracellular ROS and MDA, promoted the antioxidant enzymes activity including SOD and GSH-Px. Moreover, EJ1 reduced the levels of cellular NO and mRNA of TNF-α, IL-6 and IL-8. Further investigation showed that EJ1 treatment led to up-regulation of CFLAR protein expression and down-regulation of JNK protein phosphorylation. These results revealed that EJ1 has the potential to alleviate lipid accumulation, insulin resistance, oxidative stress, and inflammatory responses in OA-treated HepG2 cellular model of NAFLD, representing a promising leading compound for NAFLD, possibly by activating the CFLAR-JNK pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sharma M, Mitnala S, Vishnubhotla RK, Mukherjee R, Reddy DN, Rao PN. The riddle of nonalcoholic fatty liver disease: progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J Clin Exp Hepatol. 2015;5:147–58. https://doi.org/10.1016/j.jceh.2015.02.002.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158:1851–64. https://doi.org/10.1053/j.gastro.2020.01.052.

    Article  PubMed  CAS  Google Scholar 

  3. Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2018;68:361–71. https://doi.org/10.1002/hep.29724.

    Article  PubMed  Google Scholar 

  4. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5. https://doi.org/10.1016/s0016-5085(98)70599-2.

    Article  PubMed  CAS  Google Scholar 

  5. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48:434–41. https://doi.org/10.1007/s00535-013-0758-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wang PX, Ji YX, Zhang XJ, Zhao LP, Yan ZZ, Zhang P, et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat Med. 2017;23:439–49. https://doi.org/10.1038/nm.4290.

    Article  PubMed  CAS  Google Scholar 

  7. Liu Y, Yu Q, Chen Y. Effect of silibinin on CFLAR-JNK pathway in oleic acid-treated HepG2 cells. Biomed Pharmacother. 2018;108:716–23. https://doi.org/10.1016/j.biopha.2018.09.089.

    Article  PubMed  CAS  Google Scholar 

  8. Ge YZ. Resources and utilization of EuscaphisJ japonica. Chin Wild Plant Resour. 2004;23:24–5.

    Google Scholar 

  9. Kim KH, Choi SH, Lee TS, Oh WK, Kim DS, Kim JB. Selective LXRalpha inhibitory effects observed in plant extracts of MEH184 (Parthenocissua tricuspidata) and MEH185 (Euscaphis japonica). Biochem Biophys Res Commun. 2006;349:513–8. https://doi.org/10.1016/j.bbrc.2006.08.092.

    Article  PubMed  CAS  Google Scholar 

  10. Lee MK, Jeon HY, Lee KY, Kim SH, Ma CJ, Sung SH, et al. Inhibitory constituents of Euscaphis japonica on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Planta Med. 2007;73:782–6. https://doi.org/10.1055/s-2007-981551.

    Article  PubMed  CAS  Google Scholar 

  11. Lee MK, Lee KY, Jeon HY, Sung SH, Kim YC. Antifibrotic activity of triterpenoids from the aerial parts of Euscaphis japonica on hepatic stellate cells. J Enzym Inhib Med Chem. 2009;24:1276–9. https://doi.org/10.3109/14756360902829709.

    Article  CAS  Google Scholar 

  12. Li YC, Tian K, Sun LJ, Long H, Li LJ, Wu ZZ. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation. Fitoterapia. 2016;109:261–5. https://doi.org/10.1016/j.fitote.2016.01.016.

    Article  PubMed  CAS  Google Scholar 

  13. Li S, Liao X, Meng F, Wang Y, Sun Z, Guo F, et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS ONE. 2014;9:e86724. https://doi.org/10.1371/journal.pone.0086724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lin YN, Chang HY, Wang CCN, Chu FY, Shen HY, Chen CJ, et al. Oleanolic acid inhibits liver x receptor alpha and pregnane x receptor to attenuate ligand-induced lipogenesis. J Agric Food Chem. 2018;66:10964–76. https://doi.org/10.1021/acs.jafc.8b03372.

    Article  PubMed  CAS  Google Scholar 

  15. Toppo E, Sylvester Darvin S, Esakkimuthu S, Buvanesvaragurunathan K, Ajeesh Krishna TP, Antony Caesar S, et al. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomed Pharmacother. 2018;107:979–88. https://doi.org/10.1016/j.biopha.2018.08.019.

    Article  PubMed  CAS  Google Scholar 

  16. Liou CJ, Dai YW, Wang CL, Fang LW, Huang WC. Maslinic acid protects against obesity-induced nonalcoholic fatty liver disease in mice through regulation of the Sirt1/AMPK signaling pathway. FASEB J. 2019;33:11791–803. https://doi.org/10.1096/fj.201900413RRR.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mu Q, Wang H, Tong L, Fang Q, Xiang M, Han L, et al. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J. 2020;34:13033–48. https://doi.org/10.1096/fj.202000546R.

    Article  PubMed  CAS  Google Scholar 

  18. Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32:1103–8. https://doi.org/10.1007/s12272-009-1801-1.

    Article  PubMed  CAS  Google Scholar 

  19. Triquell MF, Diaz-Lujan C, Romanini MC, Ramirez JC, Paglini-Oliva P, Schijman AG, et al. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi. Am J Reprod Immunol. 2018;80:e12852. https://doi.org/10.1111/aji.12852.

    Article  PubMed  CAS  Google Scholar 

  20. Uysal S, Armutcu F, Aydogan T, Akin K, Ikizek M, Yigitoglu MR. Some inflammatory cytokine levels, iron metabolism and oxidan stress markers in subjects with nonalcoholic steatohepatitis. Clin Biochem. 2011;44:1375–9. https://doi.org/10.1016/j.clinbiochem.2011.09.017.

    Article  PubMed  CAS  Google Scholar 

  21. Xu JY, Zhang L, Li ZP, Ji G. Natural products on nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1347–55. https://doi.org/10.2174/1389450116666150531155711.

    Article  PubMed  CAS  Google Scholar 

  22. Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;2:95–104.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Perla FM, Prelati M, Lavorato M, Visicchio D, Anania C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children. 2017;4. https://doi.org/10.3390/children4060046.

  24. Fabbrini E, Magkos F. Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 2015;7:4995–5019. https://doi.org/10.3390/nu7064995.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000. https://doi.org/10.1002/hep.20920.

    Article  PubMed  CAS  Google Scholar 

  26. Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008;134:1369–75. https://doi.org/10.1053/j.gastro.2008.01.075.

    Article  PubMed  CAS  Google Scholar 

  27. Salamone F, Bugianesi E. Nonalcoholic fatty liver disease: the hepatic trigger of the metabolic syndrome. J Hepatol. 2010;53:1146–7. https://doi.org/10.1016/j.jhep.2010.06.013.

    Article  PubMed  Google Scholar 

  28. Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, et al. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol. 2013;17:714–20. https://doi.org/10.1016/j.intimp.2013.08.019.

    Article  PubMed  CAS  Google Scholar 

  29. Gao Y, Zhang M, Zhang R, You L, Li T, Liu RH. Whole grain brown rice extrudate ameliorates the symptoms of diabetes by activating the IRS1/PI3K/AKT insulin pathway in db/db mice. J Agric Food Chem. 2019;67:11657–64. https://doi.org/10.1021/acs.jafc.9b04684.

    Article  PubMed  CAS  Google Scholar 

  30. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. https://doi.org/10.1038/414799a.

    Article  PubMed  CAS  Google Scholar 

  31. Finck BN. Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis. Diabetes. 2018;67:2485–93. https://doi.org/10.2337/dbi18-0024.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19:291–302. https://doi.org/10.1016/j.numecd.2008.12.015.

    Article  PubMed  CAS  Google Scholar 

  33. Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. https://doi.org/10.1155/2018/9547613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ntheazarian AR, Kangari P, Salmaninejad A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev. 2014;15:4745–51. https://doi.org/10.7314/apjcp.2014.15.12.4745.

    Article  Google Scholar 

  35. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69. https://doi.org/10.1016/j.freeradbiomed.2011.10.003.

    Article  PubMed  CAS  Google Scholar 

  36. Chen J, Tian J, Ge H, Liu R, Xiao J. Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food Chem Toxicol. 2017;109:930–40. https://doi.org/10.1016/j.fct.2016.12.017.

    Article  PubMed  CAS  Google Scholar 

  37. Gehrke N, Schattenberg JM. Metabolic inflammation-A role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology. 2020;158:1929–47 e6. https://doi.org/10.1053/j.gastro.2020.02.020.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program for Basic research project (free inquiry) of Shenzhen Science and Technology Plan (grant number JCYJ20170306171157738); National Natural Science Foundation of China (grant number 81560703); Open Foundation for National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology (grant number M20181007, M20202003); and College Student Innovation and Entrepreneurship Training Program (grant number S202010512064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, S., Lu, Y. et al. Effect of a hexacyclic triterpenic acid from Euscaphis japonica on the oleic acid induced HepG2 cellular model of non-alcoholic fatty liver disease. Med Chem Res 31, 2209–2219 (2022). https://doi.org/10.1007/s00044-022-02982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02982-z

Keywords

Navigation