Skip to main content
Log in

Prostacyclin (PGI2) scaffolds in medicinal chemistry: current and emerging drugs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Prostacyclin (PGI2) is a natural hormone that has primarily been explored for its potent vasodilation activity and inhibition of platelet aggregation. The chemical structure of prostacyclin has intrinsic instability in aqueous solutions that limited its analysis and clinical use. Therefore, different analogues have been designed and synthesized with similar activity as prostacyclin and with greatly improved stability. Moreover, structural modifications in its α- and ω-sidechains for some analogues resulted in better activity and/or potency and other unique functions. This review covered the discovery and chemistry of prostacyclin. The current and emerging drugs with their structural scaffolds are also reviewed herein with a detailed comparison of their structural modifications and clinical effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mitchell JA, Ahmetaj-Shala B, Kirkby NS, Wright WR, Mackenzie LS, Reed DM, et al. Role of prostacyclin in pulmonary hypertension. Glob Cardiol Sci Pr. 2014;2014:382–93. https://doi.org/10.5339/gcsp.2014.53

    Article  Google Scholar 

  2. Zardi EM, Zardi DM, Dobrina A, Afeltra A. Prostacyclin in sepsis: a systematic review. Prostaglandins Other Lipid Mediat. 2007;83:1–24. https://doi.org/10.1016/j.prostaglandins.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  3. Rahman MS. Prostacyclin: A major prostaglandin in the regulation of adipose tissue development. J Cell Physiol. 2019;234:3254–62. https://doi.org/10.1002/jcp.26932

    Article  CAS  PubMed  Google Scholar 

  4. McAdam BF, Catella-Lawson F, Mardini IA, Kapoor S, Lawson JA, FitzGerald GA. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci USA. 1999;96:272–7. https://doi.org/10.1073/pnas.96.1.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smyth EM, Austin SC, Reilly MP, FitzGerald GA. Internalization and sequestration of the human prostacyclin receptor. J Biol Chem. 2000;275:32037–45. https://doi.org/10.1074/jbc.M003873200

    Article  CAS  PubMed  Google Scholar 

  6. Bolego C, Buccellati C, Prada A, Gaion RM, Folco G, Sala A. Critical role of COX-1 in prostacyclin production by human endothelial cells under modification of hydroperoxide tone. FASEB J. 2009;23:605–12. https://doi.org/10.1096/fj.08-106591

    Article  CAS  PubMed  Google Scholar 

  7. Piplani P, Aggarwal D, Abbhi V, Saini L. Prostaglandin analogues: current treatment option for glaucoma. Med Chem Res. 2016;25:1031–48. https://doi.org/10.1007/s00044-016-1563-5

    Article  CAS  Google Scholar 

  8. Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharm. 2019;176:1038–50. https://doi.org/10.1111/bph.14167

    Article  CAS  Google Scholar 

  9. Granström E. Prostaglandin chemistry. Acta Obstet et Gynecol Scand. 1979;58:13–4. https://doi.org/10.3109/00016347909157783

    Article  Google Scholar 

  10. Clapp LH, Gurung R. The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat. 2015;120:56–71. https://doi.org/10.1016/j.prostaglandins.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  11. Lee K, Lee SH, Kim TH. The biology of prostaglandins and their role as a target for allergic airway disease therapy. Int J Mol Sci. 2020;21:1–26. https://doi.org/10.3390/ijms21051851

    Article  CAS  Google Scholar 

  12. Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res. 2019;28:417–49. https://doi.org/10.1007/s00044-019-02315-7

    Article  CAS  Google Scholar 

  13. Boswell MG, Zhou W, Newcomb DC, Peebles RS Jr. PGI2 as a regulator of CD4+ subset differentiation and function. Prostaglandins Other Lipid Mediat. 2011;96:21–6. https://doi.org/10.1016/j.prostaglandins.2011.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Costanzo F, Di Dato V, Ianora A, Romano G. Prostaglandins in marine organisms: A review. Mar Drugs. 2019;17:17 https://doi.org/10.3390/md17070428

    Article  CAS  Google Scholar 

  15. Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976;263:663–5. https://doi.org/10.1038/263663a0

    Article  CAS  PubMed  Google Scholar 

  16. Moncada S, Gryglewski RJ, Bunting S, Vane JR. A lipid peroxide inhibits the enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides the substance (prostaglandin X) which prevents platelet aggregation. Prostaglandins. 1976;12:715–37. https://doi.org/10.1016/0090-6980(76)90048-4

    Article  CAS  PubMed  Google Scholar 

  17. Johnson RA, Morton DR, Kinner JH, Gorman RR, McGuire JC, Sun FF, et al. The chemical structure of prostaglandin X (prostacyclin). Prostaglandins. 1976;12:915–28. https://doi.org/10.1016/0090-6980(76)90126-X

    Article  CAS  PubMed  Google Scholar 

  18. Gryglewski RJ. Prostacyclin among prostanoids. Pharm Rep. 2008;60:3–11.

    CAS  Google Scholar 

  19. Vane J, Corin RE. Prostacyclin: a vascular mediator. Eur J Vasc Endovasc Surg. 2003;26:571–8. https://doi.org/10.1016/s1078-5884(03)00385-x

    Article  CAS  PubMed  Google Scholar 

  20. Moncada S, Korbut R, Bunting S, Vane JR. Prostacyclin is a circulating hormone. Nature. 1978;273:767–8. https://doi.org/10.1038/273767a0

    Article  CAS  PubMed  Google Scholar 

  21. Moncada S, Vane JR. Prostacyclin: Its biosynthesis, actions and clinical potential. Philos Trans R Soc Lond B Biol Sci. 1981;294:305–29. https://doi.org/10.1098/rstb.1981.0108

    Article  CAS  PubMed  Google Scholar 

  22. Arehart E, Gleim S, Kasza Z, Fetalvero KM, Martin KA, Hwa J. Prostacyclin, atherothrombosis, and cardiovascular disease. Curr Med Chem. 2007;14:2161–9. https://doi.org/10.2174/092986707781389637

    Article  CAS  PubMed  Google Scholar 

  23. Awad I, Little JR, Lucas F, Skrinska V, Slugg R, Lesser RP. Treatment of acute focal cerebral ischemia with prostacyclin. Stroke. 1983;14:203–9. https://doi.org/10.1161/01.STR.14.2.203

    Article  CAS  PubMed  Google Scholar 

  24. Stitham J, Arehart EJ, Gleim SR, Douville KL, Hwa J. Human prostacyclin receptor structure and function from naturally-occurring and synthetic mutations. Prostaglandins Other Lipid Mediat. 2007;82:95–108. https://doi.org/10.1016/j.prostaglandins.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Stitham J, Midgett C, Martin KA, Hwa J. Prostacyclin: An inflammatory paradox. Front Pharm. 2011;2:24 https://doi.org/10.3389/fphar.2011.00024

    Article  CAS  Google Scholar 

  26. Olschewski H, Rose F, Schermuly R, Ghofrani HA, Enke B, Olschewski A, et al. Prostacyclin and its analogues in the treatment of pulmonary hypertension. Pharm Ther. 2004;102:139–53. https://doi.org/10.1016/j.pharmthera.2004.01.003

    Article  CAS  Google Scholar 

  27. Reid HM, Kinsella BT. Prostacyclin receptors: Transcriptional regulation and novel signaling mechanisms. Prostaglandins Other Lipid Mediat. 2015;121:70–82. https://doi.org/10.1016/j.prostaglandins.2015.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Del Pozo R, Hernandez Gonzalez I, Escribano-Subias P. The prostacyclin pathway in pulmonary arterial hypertension: a clinical review. Expert Rev Respir Med. 2017;11:491–503. https://doi.org/10.1080/17476348.2017.1317599

    Article  CAS  PubMed  Google Scholar 

  29. Sasaki Y, Kuwata H, Akatsu M, Yamakawa Y, Ochiai T, Yoda E, et al. Involvement of prostacyclin synthase in high-fat-diet-induced obesity. Prostaglandins Other Lipid Mediat. 2021;153:106523 https://doi.org/10.1016/j.prostaglandins.2020.106523

    Article  CAS  PubMed  Google Scholar 

  30. Scheeren T, Radermacher P. Prostacyclin (PGI2): new aspects of an old substance in the treatment of critically ill patients. Intensive Care Med. 1997;23:146–58. https://doi.org/10.1007/s001340050309

    Article  CAS  PubMed  Google Scholar 

  31. Orekhov A, Tertov V, Smirnov V. Prostacyclin analogues as antiatherosclerotic drugs. Lancet. 1983;322:521 https://doi.org/10.1016/S0140-6736(83)90555-X

    Article  Google Scholar 

  32. Schneider MR, Tang DG, Schirner M, Honn KV. Prostacyclin and its analogues: antimetastatic effects and mechanisms of action. Cancer Metast Rev. 1994;13:349–64. https://doi.org/10.1007/BF00666104

    Article  CAS  Google Scholar 

  33. Fetalvero KM, Martin KA, Hwa J. Cardioprotective prostacyclin signaling in vascular smooth muscle. Prostaglandins Other Lipid Mediat. 2007;82:109–18. https://doi.org/10.1016/j.prostaglandins.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  34. Paramothayan NS, Lasserson TJ, Wells AU, Walters EH Prostacyclin for pulmonary hypertension in adults. Cochrane Database Syst Rev 2005;:CD002994. https://doi.org/10.1002/14651858.CD002994.pub2

  35. Safdar Z. Treatment of pulmonary arterial hypertension: The role of prostacyclin and prostaglandin analogs. Respir Med. 2011;105:818–27. https://doi.org/10.1016/j.rmed.2010.12.018

    Article  PubMed  Google Scholar 

  36. Pluchart H, Khouri C, Blaise S, Roustit M, Cracowski JL. Targeting the prostacyclin pathway: beyond pulmonary arterial ypertension. Trends Pharm Sci. 2017;38:512–23. https://doi.org/10.1016/j.tips.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  37. Chen S-H, Chen L-K, Teng T-H, Chou WH. Comparison of inhaled nitric oxide with aerosolized prostacyclin or analogues for the postoperative management of pulmonary hypertension: a systematic review and meta-analysis. Ann Med. 2020;52:120–30. https://doi.org/10.1080/07853890.2020.1746826

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mandras SA, Mehta HS, Vaidya A. Pulmonary hypertension: A brief guide for clinicians. Mayo Clin Proc. 2020;95:1978–88. https://doi.org/10.1016/j.mayocp.2020.04.039. 2020;95:1978–88

    Article  CAS  PubMed  Google Scholar 

  39. Hansmann G, Sallmon H, Roehr CC, Kourembanas S, Austin ED, Koestenberger M, et al. Pulmonary hypertension in bronchopulmonary dysplasia. Pediatr Res. 2021;89:446–55. https://doi.org/10.1038/s41390-020-0993-4

    Article  PubMed  Google Scholar 

  40. Cristo Ropero MJ, Cruz-Utrilla A, Escribano-Subias MP. Epoprostenol for the treatment of pulmonary arterial hypertension. Expert Rev Clin Pharm. 2021;14:1005–13. https://doi.org/10.1080/17512433.2021.1929925

    Article  CAS  Google Scholar 

  41. Kumar P, Thudium E, Laliberte K, Zaccardelli D, Nelsen A. A comprehensive review of treprostinil pharmacokinetics via four routes of administration. Clin Pharmacokinet. 2016;55:1495–505. https://doi.org/10.1007/s40262-016-0409-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gomberg-Maitland M, Olschewski H. Prostacyclin therapies for the treatment of pulmonary arterial hypertension. Eur Respir J. 2008;31:891–901. https://doi.org/10.1183/09031936.00097107

    Article  CAS  PubMed  Google Scholar 

  43. Abu Deiab GI, Croatt MP. Synthetic approaches to isocarbacyclin and analogues as potential neuroprotective agents against ischemic stroke. Bioorg Med Chem. 2019;27:338–42. https://doi.org/10.1016/j.bmc.2018.12.010

    Article  CAS  PubMed  Google Scholar 

  44. Abu Deiab GI, Croatt MP Chapter 3 - Step-economical synthesis of clinprost and analogs utilizing a novel decarboxylation reaction. In: Harmata M, editor. Strategies and Tactics in Organic Synthesis. Academic Press; 2016. p. 95–117. https://doi.org/10.1016/B978-0-08-100756-3.00003-0

  45. Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and their drugs in cardiovascular diseases: focus on atherosclerosis and stroke. Med Res Rev. 2013;33:364–438. https://doi.org/10.1002/med.21251

    Article  CAS  PubMed  Google Scholar 

  46. Cho MJ, Allen MA. Chemical stability of prostacyclin (PGI2) in aqueous solutions. Prostaglandins. 1978;15:943–54. https://doi.org/10.1016/0090-6980(78)90037-0

    Article  CAS  PubMed  Google Scholar 

  47. Rosenkranz B, Fischer C, Frölich JC. Prostacyclin metabolites in human plasma. Clin Pharm Ther. 1981;29:420–4. https://doi.org/10.1038/clpt.1981.58

    Article  CAS  Google Scholar 

  48. Deshpande SP, Mazzeffi MA, Strauss E, Hollis A, Tanaka KA. Prostacyclins in cardiac surgery: Coming of age. Semin Cardiothorac Vasc Anesth. 2018;22:306–23. https://doi.org/10.1177/1089253217749298

    Article  PubMed  Google Scholar 

  49. Scholz H. Prostaglandins. Am J Physiol Regul Integr Comp Physiol. 2003;285:R512–514. https://doi.org/10.1152/ajpregu.00298.2003

    Article  PubMed  Google Scholar 

  50. Wu KK, Liou J-Y. Cellular and molecular biology of prostacyclin synthase. Biochem Biophys Res Commun. 2005;338:45–52. https://doi.org/10.1016/j.bbrc.2005.08.021

    Article  CAS  PubMed  Google Scholar 

  51. Chiang C-W, Yeh H-C, Wang L-H, Chan NL. Crystal structure of the human prostacyclin synthase. J Mol Bio. 2006;364:266–74. https://doi.org/10.1016/j.jmb.2006.09.039

    Article  CAS  Google Scholar 

  52. Mubarak KK. A review of prostaglandin analogs in the management of patients with pulmonary arterial hypertension. Respir Med. 2010;104:9–21. https://doi.org/10.1016/j.rmed.2009.07.015

    Article  PubMed  Google Scholar 

  53. Honorato Pérez J. Selexipag, a selective prostacyclin receptor agonist in pulmonary arterial hypertension: a pharmacology review. Expert Rev Clin Pharm. 2017;10:753–62. https://doi.org/10.1080/17512433.2017.1322900

    Article  CAS  Google Scholar 

  54. Brown MM, Pickles H. Effect of epoprostenol (prostacyclin, PGI2) on cerebral blood flow in man. J Neurol Neurosurg Psychiatry. 1982;45:1033–6. https://doi.org/10.1136/jnnp.45.11.1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mikhailidis DP, Mikhailidis AM, Barradas MA, Dandona P. Infusion of prostacyclin (epoprostenol). Lancet. 1982;2:767 https://doi.org/10.1016/s0140-6736(82)90949-7

    Article  CAS  PubMed  Google Scholar 

  56. Barnes H, Yeoh H-L, Fothergill T, Burns A, Humbert M, Williams T. Prostacyclin for pulmonary arterial hypertension. Cochrane Database Syst Rev. 2019;5:CD012785 https://doi.org/10.1002/14651858.CD012785.pub2

    Article  PubMed  Google Scholar 

  57. Stubbe B, Opitz CF, Halank M, Halank M, Habedank D, Ewert R. Intravenous prostacyclin-analogue therapy in pulmonary arterial hypertension - A review of the past, present and future. Respir Med. 2021;179:106336 https://doi.org/10.1016/j.rmed.2021.106336

    Article  PubMed  Google Scholar 

  58. Gais H-J, Kramp GJ, Wolters D, Reddy LR. Development of a common fully stereocontrolled access to the medicinally important and promising prostacyclin analogues iloprost, 3-oxa-iloprost and cicaprost. Chem Eur J. 2006;12:5610–7. https://doi.org/10.1002/chem.200600187

    Article  CAS  PubMed  Google Scholar 

  59. Baker SE, Hockman RH. Inhaled iloprost in pulmonary arterial hypertension. Ann Pharmacother. 2005;39:1265–74. https://doi.org/10.1345/aph.1E575

    Article  CAS  PubMed  Google Scholar 

  60. Chen Y, Shi J, Li L, Liu F, Zhang X, Yang Y. An alternative synthesis for iloprost via a key bicyclic aldehyde intermediate. Tetrahedron Lett. 2021;62:152627 https://doi.org/10.1016/j.tetlet.2020.152627

    Article  CAS  Google Scholar 

  61. Mereles D, Ewert R, Lodziewski S, Borst MM, Benz A, Olschewski H, et al. Effect of inhaled iloprost during off-medication time in patients with pulmonary arterial hypertension. Respiration. 2007;74:498–502. https://doi.org/10.1159/000101953

    Article  CAS  PubMed  Google Scholar 

  62. Piazza G, Creager MA. Thromboangiitis obliterans. Circ. 2010;121:1858–61. https://doi.org/10.1161/CIRCULATIONAHA.110.942383

    Article  Google Scholar 

  63. Cacione DG, Macedo CR, do Carmo Novaes F, Baptista-Silva JC. Pharmacological treatment for Buerger’s disease. Cochrane Database Syst Rev. 2020;5:CD011033 https://doi.org/10.1002/14651858.CD011033.pub4

    Article  PubMed  Google Scholar 

  64. Matsumura K, Watanabe Y, Onoe H, Watanabe Y. Prostacyclin receptor in the brain and central terminals of the primary sensory neurons: an autoradiographic study using a stable prostacyclin analogue [3H]iloprost. Neuroscience. 1995;65:493–503. https://doi.org/10.1016/0306-4522(94)00505-y

    Article  CAS  PubMed  Google Scholar 

  65. El Yafawi R, Wirth JA. What is the role of oral prostacyclin pathway medications in pulmonary arterial hypertension management? Curr Hypertens Rep. 2017;19:97 https://doi.org/10.1007/s11906-017-0796-0

    Article  CAS  PubMed  Google Scholar 

  66. McLaughlin VV, Gaine SP, Barst RJ, Oudiz RJ, Bourge RC, Frost A, et al. Efficacy and safety of treprostinil: An epoprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharm. 2003;41:293–9.

    Article  CAS  Google Scholar 

  67. Feldman J, Habib N, Fann J, Radosevich JJ. Treprostinil in the treatment of pulmonary arterial hypertension. Future Cardiol. 2020;16:547–58. https://doi.org/10.2217/fca-2020-0021

    Article  CAS  PubMed  Google Scholar 

  68. Corboz MR, Salvail W, Gagnon S, LaSala D, Laurent CE, Salvail D, et al. Prostanoid receptor subtypes involved in treprostinil-mediated vasodilation of rat pulmonary arteries and in treprostinil-mediated inhibition of collagen gene expression of human lung fibroblasts. Prostaglandins Other Lipid Mediat. 2021;152:106486 https://doi.org/10.1016/j.prostaglandins.2020.106486

    Article  CAS  PubMed  Google Scholar 

  69. Waxman A, Restrepo-Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, et al. Inhaled treprostinil in pulmonary hypertension due to interstitial lung disease. N. Engl J Med. 2021;384:325–34. https://doi.org/10.1056/NEJMoa2008470

    Article  CAS  PubMed  Google Scholar 

  70. Patterson JH, Adams KF Jr, Gheorghiade M, Bourge RC, Sueta CA, Clarke SW, et al. Acute hemodynamic effects of the prostacyclin analog 15AU81 in severe congestive heart failure. Am J Cardiol. 1995;75:26A–33A. https://doi.org/10.1016/s0002-9149(99)80380-4

    Article  CAS  PubMed  Google Scholar 

  71. Guigui A, Mazet R, Blaise S, Cracowski C, Beau-Guillaumot M, Kotzki S, et al. Treprostinil hydrogel iontophoresis in systemic sclerosis-related digital skin ulcers: A safety study. J Clin Pharm. 2020;60:758–67. https://doi.org/10.1002/jcph.1574

    Article  CAS  Google Scholar 

  72. Roustit M, Gaillard-Bigot F, Blaise S, Stanke-Labesque F, Cracowski C, Seinturier C, et al. Cutaneous iontophoresis of treprostinil in systemic sclerosis: A proof-of-concept study. Clin Pharm Ther. 2014;95:439–45. https://doi.org/10.1038/clpt.2013.255

    Article  CAS  Google Scholar 

  73. García-Lacuna J, Domínguez G, Blanco-Urgoiti J, Pérez-Castells J. Synthesis of treprostinil: key Claisen rearrangement and catalytic Pauson–Khand reactions in continuous flow. Org Biomol Chem. 2019;17:9489–501. https://doi.org/10.1039/C9OB02124H

    Article  PubMed  Google Scholar 

  74. Barst RJ, McGoon M, McLaughlin V, Tapson V, Oudiz R, Shapiro S, et al. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41:2119–25. https://doi.org/10.1016/S0735-1097(03)00463-7

    Article  CAS  PubMed  Google Scholar 

  75. Nowrouzi-Sohrabi P, Tabrizi R, Hessami K, Shabani-Borujeni M, Hosseini-Bensenjan M, Rezaei S, et al. The effects of beraprost sodium on renal function and cardiometabolic profile in patients with diabetes mellitus: a systematic review and meta-analysis of clinical trials. Int Urol Nephrol. 2022;54:111–20. https://doi.org/10.1007/s11255-021-02887-7

    Article  CAS  PubMed  Google Scholar 

  76. Umemiya S, Sakamoto D, Kawauchi G, Hayashi Y. Enantioselective total synthesis of beraprost using organocatalyst. Org Lett. 2017;19:1112–5. https://doi.org/10.1021/acs.orglett.7b00134

    Article  CAS  PubMed  Google Scholar 

  77. Higuchi K, Sawada K, Nambu H, Shogaki T, Kita Y. A convenient synthesis of the beraprost intermediate: A useful method for introducing a C3 unit at the benzyl position. Org Lett. 2003;5:3703–4. https://doi.org/10.1021/ol035371

    Article  CAS  PubMed  Google Scholar 

  78. Yoneda M, Ohkawa Y. Degradation and isomerization of nileprost, 5-cyano-16-methyl-prostacyclin, in aqueous solution. Chem Pharm Bull. 1990;38:2507–12. https://doi.org/10.1248/cpb.38.2507

    Article  CAS  Google Scholar 

  79. Takahashi A, Kirio Y, Sodeoka M, Sasai H, Shibasaki M. Highly stereoselective synthesis of exocyclic tetrasubstituted enol ethers and olefins. A synthesis of nileprost. J Am Chem Soc. 1989;111:643–7. https://doi.org/10.1021/ja00184a036

    Article  CAS  Google Scholar 

  80. Krause W, Nieuweboer B. Development of a radioimmunoassay and its application to the pharmacokinetics of the stable prostacyclin analogue, nileprost, in the rat. Prostaglandins Leukot Med. 1984;14:1–9. https://doi.org/10.1016/0262-1746(84)90017-9

    Article  CAS  PubMed  Google Scholar 

  81. Darius H, Thomsen T, Senior K. Cardiovascular actions in vitro and cardioprotective effects in vivo of nileprost, a mixed type PGI2/PGE2 agonist. J Cardiovasc Pharm. 1987;10:144–52.

    Article  CAS  Google Scholar 

  82. Bergman NA, Halvarsson T. Chemical stability of a prostacyclin analog due to the absence of intramolecular catalysis. J Org Chem. 1988;53:2548–52. https://doi.org/10.1021/jo00246a027

    Article  CAS  Google Scholar 

  83. Chiang Y, Kresge AJ, Seipp U, Winter W. Kinetics of hydrolysis of vinyl ether functional group of the stable, bioactive prostacyclin analog taprostene (CG 4203). J Org Chem. 1988;53:2552–5. https://doi.org/10.1021/jo00246a028

    Article  CAS  Google Scholar 

  84. Virgolini I, Fitscha P, Sinzinger H, Barth H. Effects of taprostene, a stable prostacyclin analogue, on haemodynamics, platelet function and arachidonate metabolism in healthy volunteers. Eur J Clin Pharm. 1990;38:347–50. https://doi.org/10.1007/BF00315573

    Article  CAS  Google Scholar 

  85. Michel G, Seipp U. In vitro studies with the stabilized epoprostenol analogue taprostene. Effect on platelets and erythrocytes. Arzneimittelforschung. 1990;40:817–22.

    CAS  PubMed  Google Scholar 

  86. Schneider J. Beneficial effects of the prostacyclin analogue taprostene on cardiovascular, pulmonary and renal disturbances in endotoxin-shocked rabbits. Eicosanoids. 1991;4:99–105.

    CAS  PubMed  Google Scholar 

  87. Robertson L, Andras A Prostanoids for intermittent claudication. Cochrane Database Syst Rev 2013;:CD000986. https://doi.org/10.1002/14651858.CD000986.pub3

  88. Vitale V, Monami M, Mannucci E. Prostanoids in patients with peripheral arterial disease: A meta-analysis of placebo-controlled randomized clinical trials. J Diabetes Complications. 2016;30:161–6. https://doi.org/10.1016/j.jdiacomp.2015.09.006

    Article  PubMed  Google Scholar 

  89. Chan K, Jones RL. Partial agonism of taprostene at prostanoid IP receptors in vascular preparations from Guinea-pig, rat, and mouse. J Cardiovasc Pharm. 2004;43:795–807.

    Article  CAS  Google Scholar 

  90. Jones RL, Chan KM. Investigation of the agonist activity of prostacyclin analogues on prostanoid EP4 receptors using GW 627368 and taprostene: evidence for species differences. Prostaglandins Leukot Ess Fat Acids. 2005;72:289–99. https://doi.org/10.1016/j.plefa.2004.12.002

    Article  CAS  Google Scholar 

  91. Schneider MR, Schirner M, Lichtner RB, Graf H. Antimetastatic action of the prostacyclin analogue cicaprost in experimental mammary tumors. Breast Cancer Res Tr. 1996;38:133–41. https://doi.org/10.1007/BF01803791

    Article  CAS  Google Scholar 

  92. Lerm M, Gais H-J, Cheng K, Vermeeren C. Asymmetric synthesis of the highly potent anti-metastatic prostacyclin analogue cicaprost and its isomer isocicaprost. J Am Chem Soc. 2003;125:9653–67. https://doi.org/10.1021/ja030200l

    Article  CAS  PubMed  Google Scholar 

  93. Corey EJ, Helal CJ. An efficient catalytic stereoselective route to a key intermediate for the synthesis of the long-lived PGI2 analog ZK 96480 (CicaprostTM). Tetrahedron Lett. 1997;38:7511–4. https://doi.org/10.1016/S0040-4039(97)01803-0

    Article  CAS  Google Scholar 

  94. Hildebrand M. Inter-species extrapolation of pharmacokinetic data of three prostacyclin-mimetics. Prostaglandins. 1994;48:297–312. https://doi.org/10.1016/0090-6980(94)90030-2

    Article  CAS  PubMed  Google Scholar 

  95. Ossenkamp KL, Gais H-J. Total synthesis of (+)-3-oxacarbacyclin 2. stereoselective deprotonation and completion of the synthesis. Liebigs Ann. 1997;1997:2433–41. https://doi.org/10.1002/jlac.199719971206

    Article  Google Scholar 

  96. Hildebrand M. Bioactivation of eptaloprost in animals and man. Prostaglandins. 1993;46:177–89. https://doi.org/10.1016/0090-6980(93)90043-7

    Article  CAS  PubMed  Google Scholar 

  97. Aiken JW, Shebuski RJ. Comparison in anesthetized dogs of the anti-aggregatory and hemodynamic effects of prostacyclin and a chemically stable prostacyclin analog, 6a-carba-PGI2 (carbacyclin). Prostaglandins. 1980;19:629–43. https://doi.org/10.1016/s0090-6980(80)80011-6

    Article  CAS  PubMed  Google Scholar 

  98. Whittle BJ, Moncada S, Whiting F, Vane JR. Carbacyclin - a potent stable prostacyclin analogue for the inhibition of platelet aggregation. Prostaglandins. 1980;19:605–27. https://doi.org/10.1016/s0090-6980(80)80010-4

    Article  CAS  PubMed  Google Scholar 

  99. Adaikan PG, Lau LC, Tai MY, Karim SMM. Inhibition of platelet aggregation with intravenous and oral administration of a carboprostacyclin analogue, 15-cyclopentyl-ω-pentanor-5(E)-carbacyclin (ONO 41483) in man. Prostaglandins Leukot Med. 1983;10:53–64. https://doi.org/10.1016/S0262-1746(83)80020-1

    Article  CAS  PubMed  Google Scholar 

  100. Nagy EE, Hyatt IF, Gettys KE, Yeazell ST, Frempong SK Jr, Croatt MP. Sequential Pd(0)-, Rh(I)-, and Ru(II)-catalyzed reactions in a nine-step synthesis of clinprost. Org Lett. 2013;15:586–9. https://doi.org/10.1021/ol303402e

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka M, Kojima C, Muramatsu M, Tanabe H. Binding affinities of isocarbacyclin methyl ester and its free acid to prostanoid receptors. Arzneimittelforschung. 1995;45:967–70.

    CAS  PubMed  Google Scholar 

  102. Sheddan NA, Mulzer J. Exploration of omega-side chain addition strategies for the syntheses of isocarbacyclin and 15R-16-(m-tolyl)-17,18,19,20-tetranorisocarbacyclin. Org Biomol Chem. 2006;4:4127–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghina’a I. Abu Deiab.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Deiab, G.I., Croatt, M.P. Prostacyclin (PGI2) scaffolds in medicinal chemistry: current and emerging drugs. Med Chem Res 31, 1241–1251 (2022). https://doi.org/10.1007/s00044-022-02914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02914-x

Keywords

Navigation