Skip to main content
Log in

Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives

  • Original Rrsearch
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel 4,6,7-substituted quinazoline derivatives were designed, synthesized and evaluated for their antiproliferative activities against human cancer cell lines (PC-3, MGC-803, HGC-27, A549 and H1975). Among all the target compounds, compound 22s displayed the most potent anti-proliferative activity against MGC-803 cells in vitro. Further mechanism studies revealed that compound 22s could obviously inhibit the colony formation and migration of MGC-803 cells. At the same time, compound 22s could induced apoptosis of MGC-803 cells and induced cell cycle arrest at G1-phase. Collectively, those work suggested that compound 22s might be a valuable solution to optimize anilinoquinazoline-based antineoplastic agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhtar J, Khan AA, Ali Z, Haider R, Shahar Yar M. Structure-activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur J Med Chem. 2017;125:143–89. https://doi.org/10.1016/j.ejmech.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  2. Elmetwally SA, Saied KF, Eissa IH, Elkaeed EB. Design, synthesis and anticancer evaluation of thieno[2,3-d]pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorg Chem. 2019;88:102944 https://doi.org/10.1016/j.bioorg.2019.102944

    Article  CAS  PubMed  Google Scholar 

  3. Fouad MM, El-Bendary ER, Suddek GM, Shehata IA, El-Kerdawy MM. Synthesis and in vitro antitumor evaluation of some new thiophenes and thieno[2,3-d]pyrimidine derivatives. Bioorg Chem. 2018;81:587–98. https://doi.org/10.1016/j.bioorg.2018.09.022

    Article  CAS  PubMed  Google Scholar 

  4. D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol. 2020;60:351–61. https://doi.org/10.1016/j.semcancer.2019.08.019

    Article  CAS  PubMed  Google Scholar 

  5. Bernchou U, Arnold TST, Axelsen B, Kluver-Kristensen M, Mahmood F, Harbo FSG, et al. Evolution of the gross tumour volume extent during radiotherapy for glioblastomas. Radiother Oncol. 2021;160:40–6. https://doi.org/10.1016/j.radonc.2021.04.001

    Article  PubMed  Google Scholar 

  6. Jin QY, Li YS, Qiao XH, Yang JW, Guo XL. Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sci. 2021;277:119426 https://doi.org/10.1016/j.lfs.2021.119426

    Article  CAS  PubMed  Google Scholar 

  7. Buchfelder M, Schlaffer S. Surgical treatment of pituitary tumours. Best Pr Res Clin Endocrinol Metab. 2009;23:677–92. https://doi.org/10.1016/j.beem.2009.05.002

    Article  Google Scholar 

  8. Arafa RK, Nour MS, El-Sayed NA. Novel heterocyclic-fused pyrimidine derivatives: synthesis, molecular modeling and pharmacological screening. Eur J Med Chem. 2013;69:498–507. https://doi.org/10.1016/j.ejmech.2013.08.042

    Article  CAS  PubMed  Google Scholar 

  9. Kerru N, Singh P, Koorbanally N, Raj R, Kumar V. Recent advances (2015-2016) in anticancer hybrids. Eur J Med Chem. 2017;142:179–212. https://doi.org/10.1016/j.ejmech.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Xu F, Shuai W, Sun H, Yao H, Ma C, et al. Discovery of Novel Quinoline-Chalcone Derivatives as Potent Antitumor Agents with Microtubule Polymerization Inhibitory Activity. J Med Chem. 2019;62:993–1013. https://doi.org/10.1021/acs.jmedchem.8b01755

    Article  CAS  PubMed  Google Scholar 

  11. Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, et al. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem. 2020;204:112640 https://doi.org/10.1016/j.ejmech.2020.112640

    Article  CAS  PubMed  Google Scholar 

  12. Alagarsamy V, Chitra K, Saravanan G, Solomon VR, Sulthana MT, Narendhar B. An overview of quinazolines: Pharmacological significance and recent developments. Eur J Medicinal Chem. 2018;151:628–85. https://doi.org/10.1016/j.ejmech.2018.03.076

    Article  CAS  Google Scholar 

  13. Gellis A, Primas N, Hutter S, Lanzada G, Remusat V, Verhaeghe P, et al. Looking for new antiplasmodial quinazolines: DMAP-catalyzed synthesis of 4-benzyloxy- and 4-aryloxy-2-trichloromethylquinazolines and their in vitro evaluation toward Plasmodium falciparum. Eur J Med Chem. 2016;119:34–44. https://doi.org/10.1016/j.ejmech.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  14. Zhang G, Wang M, Zhao J, Wang Y, Zhu M, Wang J, et al. Design, synthesis and in vitro anti-influenza A virus evaluation of novel quinazoline derivatives containing S-acetamide and NH-acetamide moieties at C-4. Eur J Med Chem. 2020;206:112706 https://doi.org/10.1016/j.ejmech.2020.112706

    Article  CAS  PubMed  Google Scholar 

  15. Zheng YG, Zhang WQ, Meng L, Wu XQ, Zhang L, An L, et al. Design, synthesis and biological evaluation of 4-aniline quinazoline derivatives conjugated with hydrogen sulfide (H2S) donors as potent EGFR inhibitors against L858R resistance mutation. Eur J Med Chem. 2020;202:112522 https://doi.org/10.1016/j.ejmech.2020.112522

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Chen L, Xu H, Li X, Zhao L, Wang W, et al. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Medicinal Chem. 2018;147:77–89. https://doi.org/10.1016/j.ejmech.2018.01.090

    Article  CAS  Google Scholar 

  17. Liu Y, Poon RTP, Shao W, Sun X, Chen H, Kok TW, et al. Blockage of epidermal growth factor receptor by quinazoline tyrosine kinase inhibitors suppresses growth of human hepatocellular carcinoma. Cancer Lett. 2007;248:32–40. https://doi.org/10.1016/j.canlet.2006.05.018

    Article  CAS  PubMed  Google Scholar 

  18. Kumar KS, Ganguly S, Veerasamy R, De Clercq E. Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. Eur J Medicinal Chem. 2010;45:5474–9. https://doi.org/10.1016/j.ejmech.2010.07.058

    Article  CAS  Google Scholar 

  19. Jatav V, Mishra P, Kashaw S, Stables JP. CNS depressant and anticonvulsant activities of some novel 3- 5-substituted 1,3,4-thiadiazole-2-yl -2-styryl quinazoline-4(3H)-ones. Eur J Medicinal Chem. 2008;43:1945–54. https://doi.org/10.1016/j.ejmech.2007.12.003

    Article  CAS  Google Scholar 

  20. Zhang J, Zhang S, Wang Y, Xu W, Zhang J, Jiang H, et al. Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito. PLoS ONE. 2014;9:e89473 https://doi.org/10.1371/journal.pone.0089473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Assad Kahn S, Costa SL, Gholamin S, Nitta RT, Dubois LG, Feve M, et al. The anti-hypertensive drug prazosin inhibits glioblastoma growth via the PKCdelta-dependent inhibition of the AKT pathway. EMBO Mol Med. 2016;8:511–26. https://doi.org/10.15252/emmm.201505421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aydinlik S, Dere E, Ulukaya E. Induction of autophagy enhances apoptotic cell death via epidermal growth factor receptor inhibition by canertinib in cervical cancer cells. Biochim Biophys Acta Gen Subj. 2019;1863:903–16. https://doi.org/10.1016/j.bbagen.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  23. Cheng Y, Mok TS, Zhou X, Lu S, Zhou Q, Zhou J, et al. Safety and efficacy of first-line dacomitinib in Asian patients with EGFR mutation-positive non-small cell lung cancer: Results from a randomized, open-label, phase 3 trial (ARCHER 1050). Lung Cancer. 2021;154:176–85. https://doi.org/10.1016/j.lungcan.2021.02.025

    Article  PubMed  Google Scholar 

  24. Kannan S, Tan DS, Verma CS. Effects of Single Nucleotide Polymorphisms on the Binding of Afatinib to EGFR: A Potential Patient Stratification Factor Revealed by Modeling Studies. J Chem Inf Model. 2019;59:309–15. https://doi.org/10.1021/acs.jcim.8b00491

    Article  CAS  PubMed  Google Scholar 

  25. Zhang M, Cai H, Du Y, Wang Y, Gong J, Xu J, et al. Enhancing the Therapeutic Efficacy of Gefitinib in Human Non-Small-Cell Lung Cancer through Drug Combination. Mol Pharm. 2021;18:1397–407. https://doi.org/10.1021/acs.molpharmaceut.0c01203

    Article  CAS  PubMed  Google Scholar 

  26. Raj V, Bhadauria AS, Singh AK, Kumar U, Rai A, Keshari AK, et al. Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine. 2019;118:144–59. https://doi.org/10.1016/j.cyto.2018.03.026

    Article  CAS  PubMed  Google Scholar 

  27. Faraji A, Oghabi Bakhshaiesh T, Hasanvand Z, Motahari R, Nazeri E, Boshagh MA, et al. Design, synthesis and evaluation of novel thienopyrimidine-based agents bearing diaryl urea functionality as potential inhibitors of angiogenesis. Eur J Med Chem. 2021;209:112942 https://doi.org/10.1016/j.ejmech.2020.112942

    Article  CAS  PubMed  Google Scholar 

  28. Li Q, An R, Xu Y, Zhou M, Li Y, Guo C, et al. Synthesis of (1,3,4-thiadiazol-2-yl)-acrylamide derivatives as potential antitumor agents against acute leukemia cells. Bioorg Med Chem Lett. 2020;30:127114 https://doi.org/10.1016/j.bmcl.2020.127114

    Article  CAS  PubMed  Google Scholar 

  29. Das D, Hong J. Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem. 2019;170:55–72. https://doi.org/10.1016/j.ejmech.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  30. Ismail RSM, Ismail NSM, Abuserii S, Abou El Ella DA. Recent advances in 4-aminoquinazoline based scaffold derivatives targeting EGFR kinases as anticancer agents. Future J Pharm Sci. 2016;2:9–19. https://doi.org/10.1016/j.fjps.2016.02.001

    Article  Google Scholar 

  31. Lee H-Y, Tang D-W, Liu C-Y, Cho E-C. A novel HDAC1/2 inhibitor suppresses colorectal cancer through apoptosis induction and cell cycle regulation. Chemico-Biol Interactions. 2022;352. https://doi.org/10.1016/j.cbi.2021.109778.

  32. Zhang SZ, Zhu XD, Feng LH, Li XL, Liu XF, Sun HC, et al. PCSK9 promotes tumor growth by inhibiting tumor cell apoptosis in hepatocellular carcinoma. Exp Hematol Oncol. 2021;10:25 https://doi.org/10.1186/s40164-021-00218-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ju Y, Wu J, Yuan X, Zhao L, Zhang G, Li C, et al. Design and Evaluation of Potent EGFR Inhibitors through the Incorporation of Macrocyclic Polyamine Moieties into the 4-Anilinoquinazoline Scaffold. J Med Chem. 2018;61:11372–83. https://doi.org/10.1021/acs.jmedchem.8b01612

    Article  CAS  PubMed  Google Scholar 

  34. Mao R, Shao J, Zhu K, Zhang Y, Ding H, Zhang C, et al. Potent, Selective, and Cell Active Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor Developed by Structure-Based Virtual Screening and Hit Optimization. J Med Chem. 2017;60:6289–304. https://doi.org/10.1021/acs.jmedchem.7b00587

    Article  CAS  PubMed  Google Scholar 

  35. Shen L-H, Li H-Y, Shang H-X, Tian S-T, Lai Y-S, Liu L-J. Synthesis and cytotoxic evaluation of new colchicine derivatives bearing 1,3,4-thiadiazole moieties. Chin Chem Lett. 2013;24:299–302. https://doi.org/10.1016/j.cclet.2013.01.052

    Article  CAS  Google Scholar 

  36. Mao R, Shao J, Zhu K, Zhang Y, Ding H, Zhang C, et al. Potent, Selective, and Cell Active Protein Arginine Methyltransferase 5 (PRMT5) Inhibitor Developed by Structure-Based Virtual Screening and Hit Optimization. J Medicinal Chem. 2017;60:6289–304. https://doi.org/10.1021/acs.jmedchem.7b00587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. U1904163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ke, Qiurong Zhang or Hongmin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Si, X., Wang, H. et al. Design, synthesis and anti-tumor activity evaluation of 4,6,7-substitute quinazoline derivatives. Med Chem Res 31, 1351–1368 (2022). https://doi.org/10.1007/s00044-022-02897-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02897-9

Keywords

Navigation