Skip to main content

Advertisement

Log in

Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) inhibitors are of widespread interest to the pharmaceutical communities. Herein, 34 organoselenium compounds were synthesized in good yields and evaluated for their AChE inhibition and glutathione peroxidase (GPX) like activities. The highest AChE inhibition efficiency was observed for the tetrazole-based selenocyanate 12 (64%), selenonaphthoquinone-based urea 39 (63.1%), tetrazole-based diselenide 25 (59.4%), selenocyanate-based urea 18 (58.4%) and selenobenzoquinone-based urea 36 (57.9%). On the other hand, the GPX highest activity was recorded for the pseudopeptide-based diselenides 21 (48.5 μM/min). Fair-moderate activities were observed for the pseudopeptide-based diselenides 22 (24.4 μM/min) and 24 (18.3 μM/min). Docking studies for 8, 12, 18, 25, and 39 compounds in AChE active site showed their similar orientation to Donepezil at the catalytic site (CAS) and the peripheral anionic site (PAS), a result that supports their inhibitory effect. This study presents a new set of synthetic organoselenium compounds with a significant inhibitory effect against AChE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA. How important is oxidative damage? Lessons from alzheimer’s disease. Free Radic Biol Med. 2000;28:831–4.

    Article  CAS  Google Scholar 

  2. Johannesson T, Kristinsson J, Snaedal J. Neurodegenerative diseases, antioxidative enzymes and copper. A review of experimental research. Laeknabladid. 2003;89:659–71.

    PubMed  Google Scholar 

  3. Lizard G, Rouaud O, Demarquoy J, Cherkaoui-Malki M, Iuliano L. Potential roles of peroxisomes in alzheimer’s disease and in dementia of the alzheimer’s type. J Alzheimers Dis. 2020;29:241–54. https://doi.org/10.3233/JAD-2011-111163.

    Article  CAS  Google Scholar 

  4. Vanzulli I, Papanikolaou M, De La R, Irene C, Pieropan F, Rivera AD, Gomez-Nicola D, et al. Disruption of oligodendrocyte progenitor cells is an early sign of pathology in the triple transgenic mouse model of alzheimer’s disease. Neurobiol Aging. 2020;1:130–9. https://doi.org/10.1016/j.neurobiolaging.2020.05.016.

  5. Pinton S, Brüning CA, Sartori Oliveira CE, Prigol M, Nogueira CW. Therapeutic effect of organoselenium dietary supplementation in a sporadic dementia of alzheimer’s type model in rats. J Nutr Biochem.2013;24:311–7. https://doi.org/10.1016/j.jnutbio.2012.06.012.

    Article  CAS  PubMed  Google Scholar 

  6. Fabiani C, Antollini SS. Alzheimer’s disease as a membrane disorder: spatial cross-talk among beta-amyloid peptides, nicotinic acetylcholine receptors and lipid rafts. Front Cell Neurosci. 2019;13:309. https://doi.org/10.3389/fncel.2019.00309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker GA, et al. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild alzheimer’s dementia. Brain. 2018;141:1840–54. https://doi.org/10.1093/brain/awy099.

  8. Girek M, Szymański P. Tacrine hybrids as multi-target-directed ligands in alzheimer’s disease: Influence of chemical structures on biological activities. Chem Pap. 2019;73:269–89. https://doi.org/10.1007/s11696-018-0590-8.

    Article  CAS  Google Scholar 

  9. Piemontese L, Tomás D, Hiremathad A, Capriati V, Candeias E, Cardoso SM, et al. Donepezil structure-based hybrids as potential multifunctional anti-alzheimer’s drug candidates. J Enzym Inhibition Medicinal Chem. 2018;33:1212–24. https://doi.org/10.1080/14756366.2018.1491564.

  10. Birks JS, Harvey RJ. Donepezil for dementia due to alzheimer’s disease. Cochrane Database of systematic reviews. 2018. https://doi.org/10.1002/14651858.CD001190.pub3.

  11. Saleem U, Sabir S, Niazi SG, Naeem M, Ahmad B. Role of oxidative stress and antioxidant defense biomarkers in neurodegenerative diseases. Critical Reviews™ in Eukaryotic Gene Expression. 2020;30. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020029202.

  12. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and alzheimer disease. Nat Rev Neurosci. 2019;20:148–60. https://doi.org/10.1038/s41583-019-0132-6.

    Article  CAS  PubMed  Google Scholar 

  13. Narayanankutty A, Job JT, Narayanankutty V. Glutathione, an antioxidant tripeptide: Dual roles in carcinogenesis and chemoprevention. Curr Protein Pept Sci. 2019;20:907–17. https://doi.org/10.2174/1389203720666190206130003.

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Gong Y, Sun Y, Cai J, Liu Q, Bao J, et al. Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res. 2020;194:237–43. https://doi.org/10.1007/s12011-019-01775-7.

  15. Schomburg L. The other view: The trace element selenium as a micronutrient in thyroid disease, diabetes, and beyond. Hormones. 2020:1–10. https://doi.org/10.1007/s42000-019-00150-4.

  16. Sanmartin C, Ruberte AC, Ibanez E, Moreno E, Espuelas S, Plano D. Selenium entities: Promising scaffolds for the treatment of cancer and leishmania. Curr Org Synth. 2017;14:1075–81. https://doi.org/10.2174/1570179414666170517153921.

    Article  CAS  Google Scholar 

  17. Bodnar M, Szczyglowska M, Konieczka P, Namiesnik J. Methods of selenium supplementation: Bioavailability and determination of selenium compounds. Crit Rev Food Sci Nutr.2016;56:36–55. https://doi.org/10.1080/10408398.2012.709550.

    Article  CAS  PubMed  Google Scholar 

  18. Cardoso BR, Roberts BR, Bush AI, Hare DJ. Selenium, selenoproteins and neurodegenerative diseases. Metallomics. 2015;7:1213–28. https://doi.org/10.1039/c5mt00075k.

    Article  CAS  PubMed  Google Scholar 

  19. Wirth T. Small organoselenium compounds: More than just glutathione peroxidase mimics. Angew Chem Int Ed. 2015;54:10074–6. https://doi.org/10.1002/anie.201505056.

    Article  CAS  Google Scholar 

  20. Ibrahim M, Muhammad N, Naeem M, Deobald AM, Kamdem JP, Rocha JB. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol Vitr.2015;29:947–52. https://doi.org/10.1016/j.tiv.2015.03.017.

    Article  CAS  Google Scholar 

  21. Luo Z, Liang L, Sheng J, Pang Y, Li J, Huang L, et al. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against alzheimer’s disease. Bioorg Med Chem. 2014;22:1355–61. https://doi.org/10.1016/j.bmc.2013.12.066.

  22. Parnham MJ, Sies H. The early research and development of ebselen. Biochem Pharmacol.2013;86:1248–53. https://doi.org/10.1016/j.bcp.2013.08.028.

    Article  CAS  PubMed  Google Scholar 

  23. Galant LS, Rafique J, Braga AL, Braga FC, Saba S, Radi R, et al. The thiol-modifier effects of organoselenium compounds and their cytoprotective actions in neuronal cells. Neurochem. Res. 2020;1-11. https://doi.org/10.1007/s11064-020-03026-x.

  24. Chen Z, Lai H, Hou L, Chen T. Rational design and action mechanisms of chemically innovative organoselenium in cancer therapy. Chem Commun. 2020;56:179–96. https://doi.org/10.1039/C9CC07683B.

    Article  CAS  Google Scholar 

  25. He X, Zhong M, Li S, Li Y, Li Z, Gao Y, et al. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur J Med Chem.2020;15:112864. https://doi.org/10.1016/j.ejmech.2020.112864.

  26. Miller S. Exploring avenues in synthetic methodology: novel approaches to organoselenium and organofluorine chemistry, and greener methods for oxidation and amidation. The University of Connecticut, Storrs, United States 2019.

  27. Lenardão EJ, Santi C, Sancineto L. New frontiers in organoselenium compounds. Cham, Switzerland: Springer International Publishing; 2018.

    Book  Google Scholar 

  28. Jain VK. An overview of organoselenium chemistry: from fundamentals to synthesis. In: Jain VK, Priyadarsini KI, Eds. Organoselenium Compounds in Biology and Medicine. Cambridge, UK: Royal Society of Chemistry; 2017. p. 1–33.

    Chapter  Google Scholar 

  29. Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JB. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics. 2017;9:1703–34. https://doi.org/10.1039/c7mt00083a.

    Article  CAS  PubMed  Google Scholar 

  30. Glaser V, Martins Rde P, Vieira AJ, Oliveira ED, Straliotto MR, Mukdsi JH, et al. Diphenyl diselenide administration enhances cortical mitochondrial number and activity by increasing hemeoxygenase type 1 content in a methylmercury-induced neurotoxicity mouse model. Mol Cell Biochem. 2014;390:1–810. https://doi.org/10.1007/s11010-013-1870-9.

  31. Makhal PN, Nandi A, Kaki VR. Insights into the recent synthetic advances of organoselenium compounds. ChemistrySelect. 2021;6:663–79. https://doi.org/10.1002/slct.202004029.

    Article  CAS  Google Scholar 

  32. Nogueira CW, Barbosa NV, Rocha JB. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol.2021;95:1179–226. https://doi.org/10.1007/s00204-021-03003-5.

    Article  CAS  PubMed  Google Scholar 

  33. Liao L, Zhao X. Modern organoselenium catalysis: opportunities and challenges. Synlett. 2021. https://doi.org/10.1055/a-1506-5532.

  34. Mugesh G, du Mont WW, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev.2001;101:2125–80. https://doi.org/10.1021/cr000426w.

    Article  CAS  PubMed  Google Scholar 

  35. Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev.2004;104:6255–86. https://doi.org/10.1021/cr0406559.

    Article  CAS  PubMed  Google Scholar 

  36. Soriano-Garcia M. Organoselenium compounds as potential therapeutic and chemopreventive agents: a review. Curr Med Chem.2004;11:1657–69. https://doi.org/10.2174/0929867043365053.

    Article  CAS  PubMed  Google Scholar 

  37. Antunes Soares F, Farina M, Boettcher AC, Braga AL, Batista T, Rocha J. Organic and inorganic forms of selenium inhibited differently fish (rhamdia quelen) and rat (rattus norvergicus albinus) delta-aminolevulinate dehydratase. Environ Res.2005;98:46–5410. https://doi.org/10.1016/j.envres.2004.07.011.

    Article  CAS  PubMed  Google Scholar 

  38. Plano D, Sanmartin C, Moreno E, Prior C, Calvo A, Palop JA. Novel potent organoselenium compounds as cytotoxic agents in prostate cancer cells. Bioorg Med Chem Lett.2007;17:6853–910. https://doi.org/10.1016/j.bmcl.2007.10.022.

    Article  CAS  PubMed  Google Scholar 

  39. Naithani R. Organoselenium compounds in cancer chemoprevention. Mini Rev Med Chem.2008;8:657–68. https://doi.org/10.2174/138955708784567368.

    Article  CAS  PubMed  Google Scholar 

  40. Doering M, Ba LA, Lilienthal N, Nicco C, Scherer C, Abbas M, et al. Synthesis and selective anticancer activity of organochalcogen based redox catalysts. J Med Chem. 2010;53:6954–63.

  41. Krief A, Hevesi L. Organoselenium chemistry I: functional group transformations. Springer Science & Business Media; Berlin, Germany, 2012.

  42. Ma Y, Liu M, Zhou Y, Wu H. Synthesis of organoselenium compounds with elemental selenium. Adv Synth Catal. 2021;363:5386–406. https://doi.org/10.1002/adsc.202101227

    Article  CAS  Google Scholar 

  43. Shaaban S, Zarrouk A, Vervandier-Fasseur D, Al-Faiyz YS, El-Sawy H, Althagafi I, et al. Cytoprotective organoselenium compounds for oligodendrocytes. Arab J Chem. 2021;14:103051. https://doi.org/10.1016/j.arabjc.2021.103051.

  44. El-Senduny FF, Shabana SM, Rösel D, Brabek J, Althagafi I, Angeloni G, et al. Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents. Future Medicinal Chem. 2021;13:1655–77. https://doi.org/10.4155/fmc-2021-0114.

  45. Shaaban S, Shabana SM, Al-Faiyz YS, Manolikakes G, El-Senduny FF. Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudopeptides. Bioorg Chem.2021;109:104713. https://doi.org/10.1016/j.bioorg.2021.104713.

    Article  CAS  PubMed  Google Scholar 

  46. Shaaban S, Ashmawy AM, Negm A, Wessjohann LA. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur J Med Chem.2019;179:515–26. https://doi.org/10.1016/j.ejmech.2019.06.075.

    Article  CAS  PubMed  Google Scholar 

  47. Cherkaoui-Malki M, Shaaban S, Tahri-Joutey M, Elshobaky A, Saih FE, Vervandier-Fasseur D, et al. Cytoprotective and antioxidants in peroxisomal neurodegenerative diseases. Multidiscip Digital Publ Inst Proc. 2019;11:33. https://doi.org/10.3390/proceedings2019011033.

  48. Canto RF, Barbosa FA, Nascimento V, de Oliveira AS, Brighente IM, Braga AL. Design, synthesis and evaluation of seleno-dihydropyrimidinones as potential multi-targeted therapeutics for alzheimer’s disease. Org Biomolecular Chem. 2014;12:3470–7. https://doi.org/10.1039/C4OB00598H.

    Article  CAS  Google Scholar 

  49. Barbosa FA, Canto RF, Saba S, Rafique J, Braga AL. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against alzheimer’s disease. Bioorg Med Chem.2016;24:5762–70. https://doi.org/10.1016/j.bmc.2016.09.031.

    Article  CAS  PubMed  Google Scholar 

  50. Luo Z, Liang L, Sheng J, Pang Y, Li J, Huang L, et al. Synthesis and biological evaluation of a new series of ebselen derivatives as glutathione peroxidase (GPx) mimics and cholinesterase inhibitors against alzheimer’s disease. Bioorg Med Chem.2014;22:1355–6110. https://doi.org/10.1016/j.bmc.2013.12.066.

  51. Duarte LFB, Oliveira RL, Rodrigues KC, Voss GT, Godoi B, Schumacher RF, et al. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg Med Chem. 2017;25:6718–23.

  52. Stefanello ST, Gubert P, Puntel B, Mizdal CR, de Campos MM, Salman SM, et al. Protective effects of novel organic selenium compounds against oxidative stress in the nematode caenorhabditis elegans. Toxicol Rep.2015;2:961–7. https://doi.org/10.1016/j.toxrep.2015.06.010.

  53. Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med. 2020;156:107–12. https://doi.org/10.1016/j.freeradbiomed.2020.06.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weglarz-Tomczak E, Tomczak JM, Talma M, Brul S. Ebselen as a highly active inhibitor of PLProCoV2. BioRxiv. 2020. https://doi.org/10.1101/2020.05.17.100768.

  55. Benelli JL, Poester VR, Munhoz LS. Melo AM, Trápaga MR, Stevens DA, et al. Ebselen and diphenyl diselenide against fungal pathogens: a systematic review. Med Mycol. 2021;59:409–21. https://doi.org/10.1093/mmy/myaa115.

  56. Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine–ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett. 2013;23:6737–42. https://doi.org/10.1016/j.bmcl.2013.10.034.

    Article  CAS  PubMed  Google Scholar 

  57. Shaaban S, Vervandier-Fasseur D, Andreoletti P, Zarrouk A, Richard P, Negm A, Manolikakes G, et al. Cytoprotective and antioxidant properties of organic selenides for the myelin-forming cells, oligodendrocytes. Bioorg Chem. 2018;80:43–56. https://doi.org/10.1016/j.bioorg.2018.05.019.

  58. Corbeil CR, Englebienne P, Moitessier N. Docking ligands into flexible and solvated macromolecules. 1. development and validation of FITTED 1.0. J Chem Inf Modeling. 2007;47:435–49. https://doi.org/10.1021/ci6002637.

    Article  CAS  Google Scholar 

  59. Akhoon BA, Choudhary S, Tiwari H, Kumar A, Barik MR, Rathor L, et al. Discovery of a new donepezil-like acetylcholinesterase inhibitor for targeting alzheimer’s disease: computational studies with biological validation. J Chem Inf Modeling. 2020;60:4717–29. https://doi.org/10.1021/acs.jcim.0c00496.

    Article  CAS  Google Scholar 

  60. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–6. https://doi.org/10.1021/jm300871x.

    Article  CAS  PubMed  Google Scholar 

  61. Ellman GL, Courtney KD, Andres V,Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol.1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

  62. Nguyen H, Kim SM. Antioxidative, anticholinesterase and antityrosinase activities of the red alga grateloupia lancifolia extracts. Afr J Biotechnol. 2012;11:9457–67. https://doi.org/10.5897/AJB11.2988.

    Article  CAS  Google Scholar 

  63. Mathew M, Subramanian S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PloS One. 2014;9:e86804. https://doi.org/10.1371/journal.pone.0086804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Komersova A, Komers K, Čegan A. New findings about ellman’s method to determine cholinesterase activity. Z für Naturforsch C. 2007;62:150–4. https://doi.org/10.1515/znc-2007-1-225.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amr M. Mowafy or Saad Shaaban.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaay, D.A., Ahmed, D.M., Mowafy, A.M. et al. Evaluation of novel multifunctional organoselenium compounds as potential cholinesterase inhibitors against Alzheimer’s disease. Med Chem Res 31, 894–904 (2022). https://doi.org/10.1007/s00044-022-02879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02879-x

Keywords

Navigation