Abstract
Beta-sitosterol (1) and ingol 7,8,12-triacetate 3-phenylacetate (2) were isolated from leaves of Synadenium grantii Hook F. and screened for anti-tumor activity against a NCI60 cell line panel. The highly functionalized ingol diterpene (2) displayed cytotoxicity against leukemia cancer cells (SR) and renal cancer cells (CAKI-1) with growth inhibition of 33% and 21%, respectively. Since PIK3α inhibitors are predicted to target PI3K/Akt signaling that is operative in renal cancer and leukemia, in silico molecular docking simulations with an alpha isoform of PIK3 were performed. Docking simulations confirmed that 2 fits in the active site with a docking score of −9.03 kcal/mol. Computational modeling included biological validation against the enzyme target, PI3KCα based on the commercial inhibitors X6K and GDC-0326 with experimental IC50 values of 18 and 0.2 nM, respectively. Ingol diterpene (2), isolated from the medicinal herb S. grantii, holds potential as an inhibitor for select tumors; binding simulations indicate possible inhibition via the PI3K/Akt signaling pathway.

Graphical abstract
This is a preview of subscription content, access via your institution.




References
Nogueira IA, Leao AB, Vieira Mde S, Benfica PL, da Cunha LC, Valadares MC. Antitumoral and antiangiogenic activity of Synadenium umbellatum Pax. J Ethnopharmacol. 2008;120:474–8. https://doi.org/10.1016/j.jep.2008.08.026.
Luz LEC, Paludo KS, Santos VLP, Franco CRC, Klein T, Silva RZ, et al. Cytotoxicity of latex and pharmacobotanical study of leaves and stem of Euphorbia umbellata (Janaúba). Rev Bras Farmacogn. 2015;25:344–52. https://doi.org/10.1016/j.bjp.2015.07.005.
Rajesh R, Nataraju A, Gowda CD, Frey BM, Frey FJ, Vishwanath BS. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: action on human fibrinogen and fibrin clot. Biochimie. 2006;88:1313–22. https://doi.org/10.1016/j.biochi.2006.06.007.
Abreu P, Matthew S, Gonzalez T, Costa D, Segundo MA, Fernandes E. Anti-inflammatory and antioxidant activity of a medicinal tincture from Pedilanthus tithymaloides. Life Sci. 2006;78:1578–85. https://doi.org/10.1016/j.lfs.2005.07.037.
Ghosh S, Samanta A, Mandal NB, Bannerjee S, Chattopadhyay D. Evaluation of the wound healing activity of methanol extract of Pedilanthus tithymaloides (L.) Poit leaf and its isolated active constituents in topical formulation. J Ethnopharmacol. 2012;142:714–22. https://doi.org/10.1016/j.jep.2012.05.048.
da S Rocha ARF, Sousa HG, do Vale Júnior EP, de Lima FL, Costa ASG, de Araújo AR, et al. Extracts and fractions of Croton L. (Euphorbiaceae) species with antimicrobial activity and antioxidant potential. LWT. 2021;139. https://doi.org/10.1016/j.lwt.2020.110521.
Latansio de Oliveira T, Fontana PD, Bavia L, Cruz LS, Crisma AR, Sassaki GL, et al. Effects of Euphorbia umbellata extracts on complement activation and chemotaxis of neutrophils. J Ethnopharmacol. 2021;265:113348. https://doi.org/10.1016/j.jep.2020.113348.
de Souza JA, Patel YBK, Grockoski HA, Nunes R, Ramos SA, Pastor MVD, et al. Toxicological and anti-inflammatory profile of Synadenium grantii Hook. f. in mice. J Ethnopharmacol. 2021;267:113487. https://doi.org/10.1016/j.jep.2020.113487.
de Oliveira TL, Munhoz AC, Lemes BM, Minozzo BR, Nepel A, Barison A, et al. Antitumoural effect of Synadenium grantii Hook f. (Euphorbiaceae) latex. J Ethnopharmacol. 2013;150:263–9. https://doi.org/10.1016/j.jep.2013.08.033.
Andersen OM, Jordheim M, Byamukama R, Mbabazi A, Ogweng G, Skaar I, et al. Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry. 2010;71:1558–63. https://doi.org/10.1016/j.phytochem.2010.05.025.
Munhoz AC, Minozzo BR, Cruz LS, Oliveira TL, Machado WM, Pereira AV, et al. Chemical and pharmacological investigation of the stem bark of Synadenium grantii. Planta Med. 2014;80:458–64. https://doi.org/10.1055/s-0034-1368300.
Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94:455–9. https://doi.org/10.1038/sj.bjc.6602970.
Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91. https://doi.org/10.1158/0008-5472.Can-07-6854.
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. https://doi.org/10.1038/nrc3860.
Wang Y, Tang Q, Li M, Jiang S, Wang X. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 2014;444:199–204. https://doi.org/10.1016/j.bbrc.2014.01.028.
Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA gene enhances the sensitivity of childhood leukemia cells to chemotherapy drugs by suppressing the phosphorylation of Akt. Yonsei Med J. 2019;60:182–90. https://doi.org/10.3349/ymj.2019.60.2.182.
Li XJ, Kim KW, Oh HC, Kim YC, Liu XQ. Chemical constrituents from stems of acanthopanax henryi. Chin Tradit Herb Drugs. 2019;50:1055–60.
Daoubi M, Marquez N, Mazoir N, Benharref A, Hernández-Galán R, Muñoz E, et al. Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorg Med Chem. 2007;15:4577–84. https://doi.org/10.1016/j.bmc.2007.04.009.
Hammadi R, Kusz N, David CZ, Behany Z, Papp L, Kemeny L, et al. Ingol and ingenol-type diterpenes from euphorbia trigona miller with keratinocyte inhibitory activity. Plants. 2021;10. https://doi.org/10.3390/plants10061206.
Ahmed AA, Couladis M, Mahmoud AA, de Adams A, Mabry TJ. Ingol diterpene ester from the latex of Euphorbia lactea. Fitoterapia. 1999;70:140–3. https://doi.org/10.1016/S0367-326X(99)00011-8.
Shi QW, Su XH, Kiyota H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev. 2008;108:4295–327. https://doi.org/10.1021/cr078350s.
Vasas A, Hohmann J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev. 2014;114:8579–612. https://doi.org/10.1021/cr400541j.
Zhang Y, Fan RZ, Sang J, Tian YJ, Chen JQ, Tang GH, et al. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorg Chem. 2020;95:103546. https://doi.org/10.1016/j.bioorg.2019.103546.
Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, et al. Blue biotechnology: computational screening of sarcophyton cembranoid diterpenes for SARS-CoV-2 main protease inhibition. Mar Drugs. 2021;19:391.
Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, et al. Non-β-Lactam allosteric inhibitors target methicillin-resistant staphylococcus aureus: an in silico drug discovery study. Antibiotics. 2021;10:934. https://doi.org/10.3390/antibiotics10080934.
Zhao Y, Zhang X, Chen Y, Lu S, Peng Y, Wang X, et al. Crystal structures of PI3Kalpha complexed with PI103 and its derivatives: new directions for inhibitors design. ACS Med Chem Lett. 2014;5:138–42. https://doi.org/10.1021/ml400378e.
Heffron TP, Heald RA, Ndubaku C, Wei B, Augistin M, Do S, et al. The rational design of selective benzoxazepin inhibitors of the α-isoform of phosphoinositide 3-kinase culminating in the identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). J Medicinal Chem. 2016;59:985–1002. https://doi.org/10.1021/acs.jmedchem.5b01483.
Zwang Y, Jonas O, Chen C, Rinne ML, Doench JG, Piccioni F, et al. Synergistic interactions with PI3K inhibition that induce apoptosis. elife. 2017;6:e24523.
Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.
Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: cancer drug discovery and development program. Semin Oncol. 1992;19:622–38.
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23. https://doi.org/10.1038/nrc1951.
Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, et al. Blue biotechnology: computational screening of sarcophyton cembranoid diterpenes for SARS-CoV-2 main protease inhibition. Mar Drugs. 2021;19:391. https://doi.org/10.3390/md19070391.
Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, et al. Non-beta-Lactam allosteric inhibitors target methicillin-resistant Staphylococcus aureus: an in silico drug discovery study. Antibiotics. 2021;10:934. https://doi.org/10.3390/antibiotics10080934.
SZYBKI 1.9.0.3. 1.9.0.3 ed. Santa Fe, NM, USA: OpenEye Scientific Software; 2016 https://www.eyesopen.com/toolkit-development.
Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem. 1999;20:720–9. 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.
Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28. https://doi.org/10.1016/0040-4020(80)80168-2.
Li R, Ma X, Song Y, Zhang Y, Xiong W, Li L, et al. Anti-colorectal cancer targets of resveratrol and biological molecular mechanism: analyses of network pharmacology, human and experimental data. J Cell Biochem. 2019;120:11265–73. https://doi.org/10.1002/jcb.28404.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
About this article
Cite this article
Li, L., Zou, Q., Chunduru, J. et al. Anti-tumor metabolites from Synadenium grantii Hook F.. Med Chem Res 31, 666–673 (2022). https://doi.org/10.1007/s00044-022-02867-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00044-022-02867-1