Skip to main content

Anti-tumor metabolites from Synadenium grantii Hook F.

Abstract

Beta-sitosterol (1) and ingol 7,8,12-triacetate 3-phenylacetate (2) were isolated from leaves of Synadenium grantii Hook F. and screened for anti-tumor activity against a NCI60 cell line panel. The highly functionalized ingol diterpene (2) displayed cytotoxicity against leukemia cancer cells (SR) and renal cancer cells (CAKI-1) with growth inhibition of 33% and 21%, respectively. Since PIK3α inhibitors are predicted to target PI3K/Akt signaling that is operative in renal cancer and leukemia, in silico molecular docking simulations with an alpha isoform of PIK3 were performed. Docking simulations confirmed that 2 fits in the active site with a docking score of −9.03 kcal/mol. Computational modeling included biological validation against the enzyme target, PI3KCα based on the commercial inhibitors X6K and GDC-0326 with experimental IC50 values of 18 and 0.2 nM, respectively. Ingol diterpene (2), isolated from the medicinal herb S. grantii, holds potential as an inhibitor for select tumors; binding simulations indicate possible inhibition via the PI3K/Akt signaling pathway.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Nogueira IA, Leao AB, Vieira Mde S, Benfica PL, da Cunha LC, Valadares MC. Antitumoral and antiangiogenic activity of Synadenium umbellatum Pax. J Ethnopharmacol. 2008;120:474–8. https://doi.org/10.1016/j.jep.2008.08.026.

    Article  PubMed  Google Scholar 

  2. Luz LEC, Paludo KS, Santos VLP, Franco CRC, Klein T, Silva RZ, et al. Cytotoxicity of latex and pharmacobotanical study of leaves and stem of Euphorbia umbellata (Janaúba). Rev Bras Farmacogn. 2015;25:344–52. https://doi.org/10.1016/j.bjp.2015.07.005.

    Article  Google Scholar 

  3. Rajesh R, Nataraju A, Gowda CD, Frey BM, Frey FJ, Vishwanath BS. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: action on human fibrinogen and fibrin clot. Biochimie. 2006;88:1313–22. https://doi.org/10.1016/j.biochi.2006.06.007.

    Article  CAS  PubMed  Google Scholar 

  4. Abreu P, Matthew S, Gonzalez T, Costa D, Segundo MA, Fernandes E. Anti-inflammatory and antioxidant activity of a medicinal tincture from Pedilanthus tithymaloides. Life Sci. 2006;78:1578–85. https://doi.org/10.1016/j.lfs.2005.07.037.

    Article  CAS  PubMed  Google Scholar 

  5. Ghosh S, Samanta A, Mandal NB, Bannerjee S, Chattopadhyay D. Evaluation of the wound healing activity of methanol extract of Pedilanthus tithymaloides (L.) Poit leaf and its isolated active constituents in topical formulation. J Ethnopharmacol. 2012;142:714–22. https://doi.org/10.1016/j.jep.2012.05.048.

    Article  CAS  PubMed  Google Scholar 

  6. da S Rocha ARF, Sousa HG, do Vale Júnior EP, de Lima FL, Costa ASG, de Araújo AR, et al. Extracts and fractions of Croton L. (Euphorbiaceae) species with antimicrobial activity and antioxidant potential. LWT. 2021;139. https://doi.org/10.1016/j.lwt.2020.110521.

  7. Latansio de Oliveira T, Fontana PD, Bavia L, Cruz LS, Crisma AR, Sassaki GL, et al. Effects of Euphorbia umbellata extracts on complement activation and chemotaxis of neutrophils. J Ethnopharmacol. 2021;265:113348. https://doi.org/10.1016/j.jep.2020.113348.

    Article  CAS  PubMed  Google Scholar 

  8. de Souza JA, Patel YBK, Grockoski HA, Nunes R, Ramos SA, Pastor MVD, et al. Toxicological and anti-inflammatory profile of Synadenium grantii Hook. f. in mice. J Ethnopharmacol. 2021;267:113487. https://doi.org/10.1016/j.jep.2020.113487.

    Article  CAS  PubMed  Google Scholar 

  9. de Oliveira TL, Munhoz AC, Lemes BM, Minozzo BR, Nepel A, Barison A, et al. Antitumoural effect of Synadenium grantii Hook f. (Euphorbiaceae) latex. J Ethnopharmacol. 2013;150:263–9. https://doi.org/10.1016/j.jep.2013.08.033.

    Article  CAS  PubMed  Google Scholar 

  10. Andersen OM, Jordheim M, Byamukama R, Mbabazi A, Ogweng G, Skaar I, et al. Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry. 2010;71:1558–63. https://doi.org/10.1016/j.phytochem.2010.05.025.

    Article  CAS  PubMed  Google Scholar 

  11. Munhoz AC, Minozzo BR, Cruz LS, Oliveira TL, Machado WM, Pereira AV, et al. Chemical and pharmacological investigation of the stem bark of Synadenium grantii. Planta Med. 2014;80:458–64. https://doi.org/10.1055/s-0034-1368300.

    Article  CAS  PubMed  Google Scholar 

  12. Karakas B, Bachman KE, Park BH. Mutation of the PIK3CA oncogene in human cancers. Br J Cancer. 2006;94:455–9. https://doi.org/10.1038/sj.bjc.6602970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91. https://doi.org/10.1158/0008-5472.Can-07-6854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24. https://doi.org/10.1038/nrc3860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Tang Q, Li M, Jiang S, Wang X. MicroRNA-375 inhibits colorectal cancer growth by targeting PIK3CA. Biochem Biophys Res Commun. 2014;444:199–204. https://doi.org/10.1016/j.bbrc.2014.01.028.

    Article  CAS  PubMed  Google Scholar 

  16. Liang X, Xin X, Qi D, Fu C, Ding M. Silencing the PIK3CA gene enhances the sensitivity of childhood leukemia cells to chemotherapy drugs by suppressing the phosphorylation of Akt. Yonsei Med J. 2019;60:182–90. https://doi.org/10.3349/ymj.2019.60.2.182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li XJ, Kim KW, Oh HC, Kim YC, Liu XQ. Chemical constrituents from stems of acanthopanax henryi. Chin Tradit Herb Drugs. 2019;50:1055–60.

    Google Scholar 

  18. Daoubi M, Marquez N, Mazoir N, Benharref A, Hernández-Galán R, Muñoz E, et al. Isolation of new phenylacetylingol derivatives that reactivate HIV-1 latency and a novel spirotriterpenoid from Euphorbia officinarum latex. Bioorg Med Chem. 2007;15:4577–84. https://doi.org/10.1016/j.bmc.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  19. Hammadi R, Kusz N, David CZ, Behany Z, Papp L, Kemeny L, et al. Ingol and ingenol-type diterpenes from euphorbia trigona miller with keratinocyte inhibitory activity. Plants. 2021;10. https://doi.org/10.3390/plants10061206.

  20. Ahmed AA, Couladis M, Mahmoud AA, de Adams A, Mabry TJ. Ingol diterpene ester from the latex of Euphorbia lactea. Fitoterapia. 1999;70:140–3. https://doi.org/10.1016/S0367-326X(99)00011-8.

    Article  CAS  Google Scholar 

  21. Shi QW, Su XH, Kiyota H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem Rev. 2008;108:4295–327. https://doi.org/10.1021/cr078350s.

    Article  CAS  PubMed  Google Scholar 

  22. Vasas A, Hohmann J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev. 2014;114:8579–612. https://doi.org/10.1021/cr400541j.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang Y, Fan RZ, Sang J, Tian YJ, Chen JQ, Tang GH, et al. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorg Chem. 2020;95:103546. https://doi.org/10.1016/j.bioorg.2019.103546.

    Article  CAS  PubMed  Google Scholar 

  24. Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, et al. Blue biotechnology: computational screening of sarcophyton cembranoid diterpenes for SARS-CoV-2 main protease inhibition. Mar Drugs. 2021;19:391.

    Article  CAS  Google Scholar 

  25. Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, et al. Non-β-Lactam allosteric inhibitors target methicillin-resistant staphylococcus aureus: an in silico drug discovery study. Antibiotics. 2021;10:934. https://doi.org/10.3390/antibiotics10080934.

  26. Zhao Y, Zhang X, Chen Y, Lu S, Peng Y, Wang X, et al. Crystal structures of PI3Kalpha complexed with PI103 and its derivatives: new directions for inhibitors design. ACS Med Chem Lett. 2014;5:138–42. https://doi.org/10.1021/ml400378e.

    Article  CAS  PubMed  Google Scholar 

  27. Heffron TP, Heald RA, Ndubaku C, Wei B, Augistin M, Do S, et al. The rational design of selective benzoxazepin inhibitors of the α-isoform of phosphoinositide 3-kinase culminating in the identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). J Medicinal Chem. 2016;59:985–1002. https://doi.org/10.1021/acs.jmedchem.5b01483.

    Article  CAS  Google Scholar 

  28. Zwang Y, Jonas O, Chen C, Rinne ML, Doench JG, Piccioni F, et al. Synergistic interactions with PI3K inhibition that induce apoptosis. elife. 2017;6:e24523.

    Article  Google Scholar 

  29. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.

    CAS  PubMed  Google Scholar 

  30. Grever MR, Schepartz SA, Chabner BA. The National Cancer Institute: cancer drug discovery and development program. Semin Oncol. 1992;19:622–38.

    CAS  PubMed  Google Scholar 

  31. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23. https://doi.org/10.1038/nrc1951.

    Article  CAS  PubMed  Google Scholar 

  32. Ibrahim MAA, Abdelrahman AHM, Atia MAM, Mohamed TA, Moustafa MF, Hakami AR, et al. Blue biotechnology: computational screening of sarcophyton cembranoid diterpenes for SARS-CoV-2 main protease inhibition. Mar Drugs. 2021;19:391. https://doi.org/10.3390/md19070391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim MAA, Abdeljawaad KAA, Abdelrahman AHM, Alzahrani OR, Alshabrmi FM, Khalaf E, et al. Non-beta-Lactam allosteric inhibitors target methicillin-resistant Staphylococcus aureus: an in silico drug discovery study. Antibiotics. 2021;10:934. https://doi.org/10.3390/antibiotics10080934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. SZYBKI 1.9.0.3. 1.9.0.3 ed. Santa Fe, NM, USA: OpenEye Scientific Software; 2016 https://www.eyesopen.com/toolkit-development.

  35. Halgren TA. MMFF VI. MMFF94s option for energy minimization studies. J Comput Chem. 1999;20:720–9. 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  36. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28. https://doi.org/10.1016/0040-4020(80)80168-2.

    Article  CAS  Google Scholar 

  37. Li R, Ma X, Song Y, Zhang Y, Xiong W, Li L, et al. Anti-colorectal cancer targets of resveratrol and biological molecular mechanism: analyses of network pharmacology, human and experimental data. J Cell Biochem. 2019;120:11265–73. https://doi.org/10.1002/jcb.28404.

    Article  CAS  Google Scholar 

  38. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Paré.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zou, Q., Chunduru, J. et al. Anti-tumor metabolites from Synadenium grantii Hook F.. Med Chem Res 31, 666–673 (2022). https://doi.org/10.1007/s00044-022-02867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02867-1

Keywords