Skip to main content

Advertisement

Log in

Synthesis and anticancer activity of Boc-Gly-Pro dipeptide-annonaceous acetogenin prodrugs targeting fibroblast activation protein or other hydrolytic enzymes

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Annonaceous acetogenins are potent ubiquinone-linked NADH oxidase inhibitors and have potent anticancer activity. Their usage in the clinic is limited because of their significant toxicity to normal cells. To obtain novel low toxicity antitumoral prodrugs, squamocin and bullatacin were covalently linked to N-butoxycarbonyl protected glycine-proline dipeptide (Boc-Gly-Pro), which may be recognized and cleaved by fibroblast activation protein (FAP), a serine protease overexpressed on the surface of tumor-associated fibroblasts. Ten squamocin and bullatacin derivatives were synthesized by attaching Boc-Gly-Pro either directly or through 6-aminocaproic acid linker to a hydroxyl group of squamocin or bullatacin. All derivatives showed high potency to inhibit 4T1 breast cancer cell line growth in the sub-µM to µM range. Compound 8 was the most active (IC50 0.30 μM) and displayed higher activity than squamocin. Most derivatives, however, display reduced potency by up to 50 folds compared to the parent drug. In the presence of FAP enzyme, the anticancer potency of compound 3 against A549, HeLa, HepG2 and MCF-7 cells was increased by up to eight folds. The data suggest that Boc-Gly-Pro-acetogenin prodrugs may show improved therapeutic potential of these acetogenins by reducing the drug doses and the toxic side effects.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Qayed WS, Aboraia AS, Abdel-Rahman HM, Youssef AF. Annonaceous acetogenins as a new anticancer agent. Pharma Chem. 2015;7:24–35.

    CAS  Google Scholar 

  2. McLaughlin JL. Paw paw and cancer: annonaceous acetogenins from discovery to commercial products. J Nat Prod. 2008;71:1311–1321.

    Article  CAS  PubMed  Google Scholar 

  3. Manu M, Imran KM, Mohan AS. Acetogenins as potential anticancer agents. Anti-Cancer Agents Med Chem. 2016;16:138–59.

    Google Scholar 

  4. Hopp DC, Alali FQ, Gu ZM, McLaughlin JL. Three new bioactive bis-adjacent THF-ring acetogenins from the bark of Annona squamosa. Bioorg Med Chem. 1998;6:569–75.

    Article  CAS  PubMed  Google Scholar 

  5. Oberlies NH, Chang CJ, McLaughlin JL. Structure–activity relationships of diverse annonaceous acetogenins against multidrug resistant human mammary adenocarcinoma (MCF-7/Adr) cells. J Med Chem. 1997;40:2102–6.

    Article  CAS  PubMed  Google Scholar 

  6. Ahammadsahib KI, Hollingworth RM, Mcgovren JP, Hui YH, Mclaughlin JL. Mode of action of bullatacin: a potent antitumor and pesticidal annonaceous acetogenin. Life Sci. 1993;53:1113–20.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Chen JW, Xu SS, Wang Y, Li X, Cai BC, et al. Antitumor activity of annonaceous acetogenins in HepS and S180 xenografts bearing mice. Bioorg Med Chem Lett. 2012;22:2717–9.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan SSF, Chang HL, Chen HW, Kuo FC, Liaw CC, Su JH, et al. Selective cytotoxicity of squamocin on T24 bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-related pathways. Life Sci. 2006;78:869–74.

    Article  CAS  PubMed  Google Scholar 

  9. Sun S, Liu J, Zhou N, Zhu W, Dou QP, Zhou K. Isolation of three new annonaceous acetogenins from Graviola fruit (Annona muricata) and their anti-proliferation on human prostate cancer cell PC-3. Bioorg Med Chem Lett. 2016;26:4382–5.

    Article  CAS  PubMed  Google Scholar 

  10. Hong J, Li Y, Xiao Y, Li Y, Guo Y, Kuang H, et al. Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf B. 2016;145:319–27.

    Article  CAS  Google Scholar 

  11. Zhang H, Sun Z, Wang K, Li N, Chen H, Tan X, et al. Multifunctional tumor-targeting cathepsin B-sensitive gemcitabine prodrug covalently targets albumin in situ and improves cancer therapy. Bioconjug Chem. 2018;29:1852–8.

    Article  CAS  PubMed  Google Scholar 

  12. Raucher D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr Opin Pharmacol. 2019;47:14–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tang D, Xin Z, Yang T, Cheng W. Paclitaxel prodrug based mixed micelles for tumor-targeted chemotherapy. RSC Adv. 2018;8:380–9.

    Article  CAS  Google Scholar 

  14. Rooseboom M, Commandeur JN, Vermeulen NP. Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev. 2004;56:53–102.

    Article  CAS  PubMed  Google Scholar 

  15. Kamal A, Tekumalla V, Krishnan A, Palbhadra M, Bhadra U. Development of pyrrolo[2,1- c][1,4]benzodiazepine β-galactoside prodrugs for selective therapy of cancer by ADEPT and PMT. ChemMedChem. 2010;3:794–802.

    Article  Google Scholar 

  16. Walther R, Rautio J, Zelikin AN. Prodrugs in medicinal chemistry and enzyme prodrug therapies. Adv Drug Deliv Rev. 2017;118:65–77.

    Article  CAS  PubMed  Google Scholar 

  17. Tansi FL, Rüger R, Böhm C, Kontermann RE, Teichgraeber UK, Fahr A, et al. Potential of activatable FAP-targeting immunoliposomes in intraoperative imaging of spontaneous metastases. Biomaterials. 2016;88:70–82.

    Article  CAS  PubMed  Google Scholar 

  18. Teichgräber V, Monasterio C, Chaitanya K, Boger R, Gordon K, Dieterle T, et al. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv Med Sci 2015;60:264–72.

    Article  PubMed  Google Scholar 

  19. Lai DM, Ma L, Wang FY. Fibroblast activation protein regulates tumor-associated fibroblasts and epithelial ovarian cancer cells. Int J Oncol. 2012;41:541–50.

    Article  CAS  PubMed  Google Scholar 

  20. Chen WT, Kelly T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 2003;22:259–69.

    Article  PubMed  Google Scholar 

  21. Pleshkan VV, Alekseenko IV, Tyulkina DV, Kyzmich AI, Zinovyeva MV, Sverdlov ED. Fibroblast activation protein (FAP) as a possible target of an antitumor strategy. Molec Genet Microbiol Virol. 2016;31:125–34.

    Article  Google Scholar 

  22. Busek P, Mateu R, Zubal M, Kotackova L, Sedo A. Targeting fibroblast activation protein in cancer—Prospects and caveats. Front Bioscience. 2018;23:1933–68.

    Article  CAS  Google Scholar 

  23. Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. J Biochim Biophys Acta Proteins Proteom. 1868;2020:140409.

    Google Scholar 

  24. Huang S, Fang R, Xu J, Qiu S, Zhang H, Du J, et al. Evaluation of the tumor targeting of a FAPα-based doxorubicin prodrug. J Drug Target. 2011;19:487–96.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Li Q, Li X, Yuan W, Huang S, Cai S, et al. A novel FAPα-based Z-Gly-Pro epirubicin prodrug for improving tumor-targeting chemotherapy. Eur J Pharmacol. 2017;815:166–72.

    Article  CAS  PubMed  Google Scholar 

  26. Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst. 2012;104:1320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lebeau AM, Brennen WN, Aggarwal S, Denmeade SR. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther. 2009;8:1378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen M, Lei X, Shi C, Huang M, Li X, Wu B, et al. Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J Clin Investig. 2017;127:3689–701.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Deng LJ, Wang LH, Peng CK, Li YB, Huang MH, Chen MF, et al. Fibroblast activation protein alpha activated tripeptide bufadienolide antitumor prodrug with reduced cardiotoxicity. J Med Chem. 2017;60:5320–33.

    Article  CAS  PubMed  Google Scholar 

  30. Akinboye ES, Brennen WN, Rosen DM, Bakare O, Denmeade SR. Iterative design of emetine-based prodrug targeting fibroblast activation protein (FAP) and dipeptidyl peptidase IV DPPIV using a tandem enzymatic activation strategy. Prostate. 2016;76:703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brennen WN, Rosen DM, Chaux A, Netto GJ, Isaacs JT, Denmeade SR. Pharmacokinetics and toxicology of a fibroblast activation protein (FAP)-activated prodrug in murine xenograft models of human cancer. Prostate. 2014;74:1308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun J, Yang D, Cui SH, Zhang HT, Fu Y, Wang JC, et al. Enhanced anti-tumor efficiency of gemcitabine prodrug by FAPα-mediated activation. Int J Pharm. 2019;559:48–57.

    Article  CAS  PubMed  Google Scholar 

  33. Shi JF, Wu P, Jiang ZH, Wei XY. Synthesis and tumor cell growth inhibitory activity of biotinylated annonaceous acetogenins. Eur J Med Chem. 2014;71:219–28.

    Article  CAS  PubMed  Google Scholar 

  34. Shi JF, Wu P, Cheng XL, Wei XY, Jiang ZH. Synthesis and cytotoxic property of annonaceous acetogenin glycoconjugates. Drug Des Dev Ther. 2020;14:4993–5004.

    Article  CAS  Google Scholar 

  35. Edosada CY, Quan C, Tran T, Pham V, Wiesmann C, Fairbrother W, et al. Peptide substrate profiling defines fibroblast activation protein as an endopeptidase of strict Gly(2)-Pro(1)-cleaving specificity. FEBS Lett. 2006;580:1581–6.

    Article  CAS  PubMed  Google Scholar 

  36. Huang CH, Suen CS, Lin CT, Chien CH, Lee HY, Chung KM, et al. Cleavage-site specificity of prolyl endopeptidase FAP investigated with a full-length protein substrate. J Biochem. 2011;149:685–92.

    Article  CAS  PubMed  Google Scholar 

  37. Pelletier SW, Djarmati Z, Pape C. Substituent effects in 13C NMR spectroscopy: Methyl, ethyl, 2-propyl and 2-methyl-2-propyl carboxylates. Tetrahedron. 1976;32:995–6.

    Article  CAS  Google Scholar 

  38. Yoshimoto K, Itatani Y, Tsuda Y. 13C-Nuclear Magnetic Resonance (NMR) Spectra of O-Acylglucoses. Additivity of Shift Parameters and Its Application to Structure Elucidations. Chem Pharm Bull. 1980;28:2065–76.

    Article  CAS  Google Scholar 

  39. Terui Y, Tori K, Tsuji N. Esterification shifts in carbon-13 NMR spectra of alcohols. Tetrahedron Lett.1976;17:621–2.

    Article  Google Scholar 

  40. Schrörs B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtsträter C, et al. Multi-omics characterization of the 4T1 murine mammary gland tumor model. Front Oncol. 2020;10:1195.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takada M, Kuwabara K, Nakato H, Tanaka A, Iwamura H, Miyoshi H. Definition of crucial structural factors of acetogenins, potent inhibitors of mitochondrial complex I. Biochim Et Biophys Acta. 2000;1460:302–10.

    Article  CAS  Google Scholar 

  42. Duval RA, Duret P, Lewin G, Peris E, Hocquemiller R. Semisynthesis and biological activity of aminoacyl triesters of squamocin, an annonaceous acetogenin. Bioorg Med Chem. 2005;13:3773–81.

    Article  CAS  PubMed  Google Scholar 

  43. Queiroz EF, Roblot F, Duret P, Figadère B, Gouyette A, Laprévote O, et al. Synthesis, spectroscopy and cytotoxicity of glycosylated acetogenin derivatives as promising molecules for cancer therapy. J Med Chem. 2000;8:1604–10.

    Article  Google Scholar 

  44. Xie HH, Wei XY, Wang JD, Liu MF, Yang RZ. A new cytotoxic acetogenin from the seeds of Annona squamosa. Chin Chem Lett. 2003;14:588–90.

    CAS  Google Scholar 

  45. Fujimoto Y, Eguchi T, Kakinuma K, Ikekawa N, Sahai M, Gupta YK. Squamocin, a new cytotoxic bis-tetrahydrofuran containing acetogenin from Annona squamosa. Chem Pharm Bull. 1988;36:4802–6.

    Article  CAS  Google Scholar 

  46. Hui YH, Rupprecht JK, Liu YM, Anderson JE, Smith DL, Chang CJ, et al. Bullatacin and bullatacinone - 2 highly potent bioactive acetogenins from Annona bullata. J Nat Prod. 1989;52:463–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Yunfei Yuan, South China Botanical Garden, Chinese Academy of Sciences, for NMR spectroscopic measurements, and Ms. Aijun Sun, South China Sea Institute of Oceanology, Chinese Academy of Sciences, for HRESIMS measurements.

Author contributions

J-FS performed experiments on chemical synthesis and wrote the first draft of the manuscript. PW performed experiments on biological studies. H-XL repeated part of the experiments on chemical synthesis. X-YW and Z-HJ supervised the whole study and revised the manuscript. X-YW funded the project. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 31470423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yi Wei or Zi-Hua Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, JF., Wu, P., Li, HX. et al. Synthesis and anticancer activity of Boc-Gly-Pro dipeptide-annonaceous acetogenin prodrugs targeting fibroblast activation protein or other hydrolytic enzymes. Med Chem Res 31, 605–616 (2022). https://doi.org/10.1007/s00044-022-02857-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02857-3

Keywords

Navigation