Skip to main content
Log in

Synthesis and biological activity of amide derivatives derived from natural product Waltherione F

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Structural optimization based on natural products has become an effective way to develop new fungicides, which provides important guiding significance for practicing the new development concept and promoting the green development of pesticides. In this project, the target compounds containing 4-quinolone and piperazine substructures based on waltherione F were synthesized through the combination of the fungicidal amide lead compound X-I-4 discovered in our previous work and various of fungicidal piperazine derivatives. Screening of their biological activities suggested that products I-3, I-5, II-3, II-7, II-10, II-11 and II-13 displayed higher inhibition rates against Rhizoctonia solani than other tested compounds. The in vitro cellular cytotoxicity assay revealed that compounds II-6 and II-11 exhibited higher cytotoxicity against HepG2 than other tested compounds. The fluorescence characteristics investigation showed that the absolute fluorescence QY value of the methanol solution of the compound I-6 was higher than those of I-2, I-3, I-7 and I-8, which was further elucidated by TD-DFT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kabbage M, Piotrowski JS, Thill E, Westrick NM, Ralph J, Hockemeyer K, et al. Poacic acid suppresses dollar spot and snow mould in amenity turfgrass. Plant Pathol. 2020;69:112–9. https://doi.org/10.1111/ppa.13099.

    Article  CAS  Google Scholar 

  2. Li H, He YH, Hu YM, Chu QR, Chen YJ, Wu ZR, et al. Design, synthesis, and structure−activity relationship studies of magnolol derivatives as antifungal agents. J Agric Food Chem. 2021;69:11781–93. https://doi.org/10.1021/acs.jafc.1c01838.

    Article  CAS  PubMed  Google Scholar 

  3. Zheng JG, Liu TT, Guo ZX, Zhang L, Mao LG, Zhang YN, et al. Fumigation and contact activities of 18 plant essential oils on Villosiclava virens, the pathogenic fungus of rice false smut. Sci Rep -UK. 2019;9:1–10. https://doi.org/10.1038/s41598-019-43433-x.

    Article  Google Scholar 

  4. Song PP, Zhao J, Liu ZL, Duan YB, Hou YP, Zhao CQ, et al. Evaluation of antifungal activities and structure–activity relationships of coumarin derivatives. Pest Manag Sci. 2017;73:94–101. https://doi.org/10.1002/ps.4422.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang ZL, Xie YJ, Hu X, Shi HA, Wei M, Lin ZF. Antifungal activity of monoterpenes against Botryosphaeria dothidea. Nat Prod Commun. 2018;13:1721–4.

    Google Scholar 

  6. Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019;275:113–22. https://doi.org/10.1016/j.foodchem.2018.09.085.

    Article  CAS  PubMed  Google Scholar 

  7. Yang GZ, Zhu JK, Yin XD, Yan YF, Wang YL, Shang XF, et al. Design, synthesis, and antifungal evaluation of novel quinoline derivative inspired from natural quinine alkaloids. J Agric Food Chem. 2019;67:11340–53. https://doi.org/10.1021/acs.jafc.9b04224.

    Article  CAS  PubMed  Google Scholar 

  8. Li JW, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier. Science. 2009;325:161–5. https://doi.org/10.1126/science.1168243.

    Article  PubMed  Google Scholar 

  9. Rodrigues T, Reker D, Petra Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8:531–41. https://doi.org/10.1038/nchem.2479.

    Article  CAS  PubMed  Google Scholar 

  10. Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Lu SC, Feng JY, Li CK, Wang WL, Pei YM, et al. Enantioselective synthesis and antifungal activity of C18 polyacetylenes. J Agric Food Chem. 2020;68:2116–23. https://doi.org/10.1021/acs.jafc.9b07967.

    Article  CAS  PubMed  Google Scholar 

  12. Jadulco RC, Pond CD, Van Wagoner RM, Koch M, Gideon OG, Matainaho TK, et al. 4‑Quinolone alkaloids from Melochia odorata. J Nat Prod. 2014;77:183–7. https://doi.org/10.1021/np400847t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cretton S, Dorsaz S, Azzollini A, Favre-Godal Q, Marcourt L, Ebrahimi SN, et al. Antifungal quinoline alkaloids from Waltheria indica. J Nat Prod. 2016;79:300–7. https://doi.org/10.1021/acs.jnatprod.5b00896.

    Article  CAS  PubMed  Google Scholar 

  14. Dorsaz S, Snäkä T, Favre-Godal Q, Maudens P, Boulens N, Furrer P, et al. Identification and mode of action of a plant natural product targeting human fungal pathogens. Antimicrob Agents Ch. 2017;61:e00829–17/1-23. https://doi.org/10.1128/AAC.00829-17.

    Article  CAS  Google Scholar 

  15. Hua XW, Liu WR, Chen Y, Ru J, Guo SJ, Yu XB, et al. Synthesis, fungicidal activity, and mechanism of action of pyrazole amide and ester derivatives based on natural products L‑serine and waltherione alkaloids. J Agric Food Chem. 2021;69:11470–84. https://doi.org/10.1021/acs.jafc.1c01346.

    Article  CAS  PubMed  Google Scholar 

  16. Hua X, Liu N, Zhou S, Zhang L, Yin H, Wang G, et al. Design, synthesis, and biological activity of novel aromatic amide derivatives containing sulfide and sulfone substructures. Engineering. 2020;6:553–9. https://doi.org/10.1016/j.eng.2019.09.011.

    Article  Google Scholar 

  17. Hua X, Liu N, Fan Z, Zong G, Ma Y, Lei K, et al. Design, synthesis and biological activity screening of novel amide derivatives containing aromatic thioether group. Chin J Org Chem. 2019;39:2581–8. https://doi.org/10.6023/cjoc201903004.

    Article  CAS  Google Scholar 

  18. Hua X, Liu W, Su Y, Liu X, Liu J, Liu N, et al. Studies on the novel pyridine sulfide containing SDH based heterocyclic amide fungicide. Pest Manag Sci. 2020;76:2368–78. https://doi.org/10.1002/ps.5773.

    Article  CAS  PubMed  Google Scholar 

  19. Liu WR, Hua XW, Zhou S, Yuan FY, Wang GQ, Liu Y, et al. Design, synthesis and biological activity of N-Sulfonyl aromatic amide derivatives. Chinese. J Struct Chem. 2021;40:666–74.

    CAS  Google Scholar 

  20. Wang BL, Li ZM, Zhang Y, Zhang LY, Zhang X, Li YH. Inventors; The preparation and application of 1,3,4-oxadiazole Mannich base compounds containing piperazine structure. CN 105541748. 2017 September 12.

  21. Bink A, Govaert G, François I, Pellens K, Meerpoel L, Borgers M, et al. A fungicidal piperazine-1-carboxamidine induces mitochondrial fission-dependent apoptosis in yeast. FEMS Yeast Res. 2010;10:812–8. https://doi.org/10.1111/j.1567-1364.2010.00663.x.

    Article  CAS  PubMed  Google Scholar 

  22. Fan ZJ, Yang ZK, Zhang HK, Mi N, Wang H, Cai F, et al. Synthesis, crystal structure, and biological activity of 4-methyl-1,2,3-thiadiazole containing 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles. J Agric Food Chem. 2010;58:2630–6. https://doi.org/10.1021/jf9029628.

    Article  CAS  PubMed  Google Scholar 

  23. An BH, Zhang RF, Li QL, Du XM, Ru J, Zhang SL, et al. Syntheses, structures and in vitro cytostatic activity of four novel homochiral organotin(IV) phosphonates. J Organomet Chem. 2019;881:51–7. https://doi.org/10.1016/j.jorganchem.2018.12.004.

    Article  CAS  Google Scholar 

  24. Li LM, Chen Y, Wang QP, Li ZJ, Liu ZF, Hua XW, et al. Albumin-encapsulated nanoparticles of naproxen platinum(IV) complexes with inflammation inhibitory competence displaying effective antitumor activities in vitro and in vivo. Int J Nanomed. 2021;16:5513–29. https://doi.org/10.2147/IJN.S322688.

    Article  Google Scholar 

  25. Arjun HA, Anil Kumar GN, Elancheran R, Kabilan S. Crystal structure, DFT and hirshfeld surface analysis of (E)-N′-[(1-chloro-3,4-dihydronaphthalen-2-yl)methylidene]benzohydrazide monohydrate. Acta Cryst. 2020;E76:132–6. https://doi.org/10.1107/S2056989019017183.

  26. Arjun HA, Rajan RK, Elancheran R, Ramanathan M, Bhattacharjee A, Kabilan S. Crystal structure, hirshfeld surface analysis, DFT and molecular docking studies on benzohydrazide derivatives as potential inhibitors of prostate cancer. Chem Data Collect. 2020;26:5. https://doi.org/10.1016/j.cdc.2020.100350.

    Article  Google Scholar 

  27. Ku J, Lansac Y, Jang YH. Time-dependent density functional theory study on benzothiadiazole-based low-band-gap fused-ring copolymers for organic solar cell applications. J Phys Chem C. 2011;115:21508–16. https://doi.org/10.1021/jp2062207.

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09 Revision A.1, Gaussian Inc., Wallingford CT, 2009.

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 32001929), the National Innovation and Entrepreneurship Training Program for College Students (No. 202110447013, 202110447032), and the Innovation and Entrepreneurship Training Program for College Students of Liaocheng University (No. CXCY2020Y116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Hua, Bingxiang Wang or Yanhong Cui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Chen, Z., Hua, X. et al. Synthesis and biological activity of amide derivatives derived from natural product Waltherione F. Med Chem Res 31, 485–496 (2022). https://doi.org/10.1007/s00044-022-02852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02852-8

Keywords

Navigation