Skip to main content

Advertisement

Log in

Drug repositioning of benzimidazole anthelmintics in the treatment of cryptococcosis: a review

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Cryptococcosis is a systemic mycosis caused by pathogenic yeasts of the Cryptococcus genus and the second biggest cause of morbidity and mortality in individuals with AIDS. Cryptococcal meningitis is the most severe form of the disease, with high lethality rates. Currently, only three antifungals drugs are approved for the treatment of cryptococcosis, which present high toxicity, low efficacy, high costs, and limited availability in several countries. The need for new antifungals for the treatment of systemic mycosis is clear; however, drug research and development is costly and time-consuming. Drug repositioning is a strategy that has been promising for the development of new therapeutic alternatives for diseases that suffer from scarce therapeutic resources, such as cryptococcosis, as it presents a considerable reduction in costs, risks, and research time. Some drug candidates for repositioning share structural similarities with each other that may reflect a scaffold in the discovery of new anticryptococcal agents. The anthelmintics drugs albendazole, flubendazole, mebendazole, and fenbendazole showed potent in vitro antifungal activity apparently related to the benzimidazole scaffold present in these drugs. Thus, this non-systematic review discusses recent data about benzimidazole anthelmintic drugs as promising candidates for repositioning in the treatment of cryptococcosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 2017;3:57. https://doi.org/10.3390/jof3040057.

    Article  Google Scholar 

  2. CDC. Fungal Infections | Fungal | Centers for Disease Control and Prevention (CDC) U.S. Department of Health & Human Services. 2020. https://www.cdc.gov/fungal/infections/index.html. Accessed 19 May 2020.

  3. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81. https://doi.org/10.1016/S1473-3099(17)30243-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chapman N, Abela-Oversteegen L, Doubell A, Chowdhary V, Gurjav U, Ong M. Neglected disease research and development: a pivotal moment for global health. Sydney: Policy Cures Research; 2017.

    Google Scholar 

  5. Rodrigues ML. Funding and innovation in diseases of neglected populations: the paradox of cryptococcal meningitis. PLoS Negl Trop Dis. 2016;10:e0004429-e. https://doi.org/10.1371/journal.pntd.0004429.

    Article  Google Scholar 

  6. Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: a wake-up call to public health officials. PLoS Negl Trop Dis. 2020;14:e0007964-e. https://doi.org/10.1371/journal.pntd.0007964.

    Article  Google Scholar 

  7. WHO. Guidelines for the diagnosis, prevention, and management of cryptococcal disease in HIV-infected adults, adolescents and children. Geneva: World Health Organization; 2018. https://www.who.int/hiv/pub/guidelines/cryptococcal-disease/en/. Accessed 3 May 2020.

  8. Brasil. Ministério da Saúde. Portaria n° 264, de 17 de fevereiro de 2020. 2020. https://bvsms.saude.gov.br/bvs/saudelegis/gm/2020/prt0264_19_02_2020.html. Accessed 12 April 2020.

  9. Oliveira EAM, Lang KL. Drug repositioning: concept, classification, methodology, and importance in rare/orphans and neglected diseases. J Appl Pharm Sci. 2018;8:157–65. https://doi.org/10.7324/JAPS.2018.8822.

    Article  Google Scholar 

  10. Butts A, DiDone L, Koselny K, Baxter BK, Chabrier-Rosello Y, Wellington M, et al. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of Cryptococcosis. Eukaryot Cell. 2013;12:278–87. https://doi.org/10.1128/EC.00314-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ngan NTT, Mai NTH, Tung NLN, Lan NPH, Tai LTH, Phu NH, et al. A randomized open label trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis. Wellcome Open Res. 2019;4:8. https://doi.org/10.12688/wellcomeopenres.15010.1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. ClinicalTrials.gov-NCT03112031. Treatment with tamoxifen in cryptococcal meningitis. 2019. https://ClinicalTrials.gov/show/NCT03112031. Accessed 21 July 2020.

  13. Brilhante RSN, Da Rocha MG, De Oliveira JS, España JDA, Pereira VS, Scm Castelo-Branco DD, et al. Proton pump inhibitors versus Cryptococcus species: effects on in vitro susceptibility and melanin production. Future Microbiol. 2019;14:489–97. https://doi.org/10.2217/fmb-2018-0340.

    Article  PubMed  CAS  Google Scholar 

  14. Fuchs BB, Rajamuthiah R, Souza ACR, Eatemadpour S, Rossoni RD, Santos DA, et al. Inhibition of bacterial and fungal pathogens by the orphaned drug auranofin. Future Medicinal Chem. 2016;8:117–32. https://doi.org/10.4155/fmc.15.182.

    Article  CAS  Google Scholar 

  15. Hai TP, Van AD, Ngan NTT, Nhat LTH, Lan NPH, Van Vinh Chau N, et al. The combination of tamoxifen with amphotericin B, but not with fluconazole, has synergistic activity against the majority of clinical isolates of Cryptococcus neoformans. Mycoses. 2019;62:myc.12955-myc. https://doi.org/10.1111/myc.12955.

    Article  Google Scholar 

  16. Ko H-T, Hsu L-H, Yang S-Y, Chen Y-L. Repurposing the thrombopoietin receptor agonist eltrombopag as an anticryptococcal agent. Med Mycol. 2020;58:493–504. https://doi.org/10.1093/MMY/MYZ077.

    Article  PubMed  CAS  Google Scholar 

  17. Magalhães TFF, Costa MC, Holanda RA, Ferreira GF, Carvalho VSD, Freitas GJC, et al. N-acetylcysteine reduces amphotericin B deoxycholate nephrotoxicity and improves the outcome of murine cryptococcosis. Med Mycol. 2020;58:835–44. https://doi.org/10.1093/mmy/myz129.

    Article  PubMed  Google Scholar 

  18. Ogundeji AO, Pohl CH, Sebolai OM. Repurposing of aspirin and ibuprofen as candidate anti-cryptococcus drugs. Antimicrobial Agents Chemother. 2016;60:4799–808. https://doi.org/10.1128/AAC.02810-15.

    Article  CAS  Google Scholar 

  19. Ogundeji AO, Pohl CH, Sebolai OM. The repurposing of anti-psychotic drugs, quetiapine and olanzapine, as anti-cryptococcus drugs. Front Microbiol. 2017;8:815. https://doi.org/10.3389/fmicb.2017.00815.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rhein J, Huppler Hullsiek K, Tugume L, Nuwagira E, Mpoza E, Evans EE, et al. Adjunctive sertraline for HIV-associated cryptococcal meningitis: a randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis. 2019;19:843–51. https://doi.org/10.1016/S1473-3099(19)30127-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ribeiro NDQ, Costa MC, Magalhães TFF, Carneiro HCS, Oliveira LV, Fontes ACL, et al. Atorvastatin as a promising anticryptococcal agent. Int J Antimicrob Agents. 2017;49:695–702. https://doi.org/10.1016/j.ijantimicag.2017.04.005.

    Article  PubMed  CAS  Google Scholar 

  22. Ribeiro NQ, Santos APN, Emídio ECP, Costa MC, Freitas GJC, Carmo PHF, et al. Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. Int J Antimicrob Agents. 2019;54:301–8. https://doi.org/10.1016/j.ijantimicag.2019.06.020.

    Article  PubMed  CAS  Google Scholar 

  23. Smith KD, Achan B, Hullsiek KH, McDonald TR, Okagaki LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrob Agents Chemother. 2015;59:7197–204. https://doi.org/10.1128/AAC.01299-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wiederhold NP, Patterson TF, Srinivasan A, Chaturvedi AK, Fothergill AW, Wormley FL, et al. Repurposing auranofin as an antifungal: In vitro activity against a variety of medically important fungi. Virulence. 2017;8:138–42. https://doi.org/10.1080/21505594.2016.1196301.

    Article  PubMed  CAS  Google Scholar 

  25. Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promising therapeutic option for neurotropic cryptococcal infections. Antimicrob Agents Chemother. 2012;56:3758–66. https://doi.org/10.1128/AAC.00212-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Maziarz EK, Perfect JR. Cryptococcosis. Infect Dis Clin North Am. 2016;30:179–206. https://doi.org/10.1016/j.idc.2015.10.006.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Molloy SF, Chiller T, Greene GS, Burry J, Govender NP, Kanyama C, et al. Cryptococcal meningitis: a neglected NTD?. PLoS Negl TropDis. 2017;11:e0005575. https://doi.org/10.1371/journal.pntd.0005575.

    Article  Google Scholar 

  28. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83. https://doi.org/10.1038/nrd1468.

    Article  PubMed  CAS  Google Scholar 

  29. Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4:565–77. https://doi.org/10.1038/s41564-019-0357-1.

    Article  PubMed  CAS  Google Scholar 

  30. Santos-Gandelman J, Machado-Silva A. Drug development for cryptococcosis treatment: what can patents tell us? Mem Inst Oswaldo Cruz. 2019;114:e180391. https://doi.org/10.1590/0074-02760180391.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Marinescu M. Introductory chapter: short insight in synthesis and applications of benzimidazole and its derivatives. IntechOpen; 2019.

  32. Vasava MS, Bhoi MN, Rathwa SK, Jethava DJ, Acharya PT, Patel DB, et al. Benzimidazole: a milestone in the field of medicinal chemistry. Mini Rev Med Chem. 2020;20:532–65. https://doi.org/10.2174/1389557519666191122125453.

    Article  PubMed  CAS  Google Scholar 

  33. Keri RS, Hiremathad A, Budagumpi S, Nagaraja BM. Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem Biol Drug Des. 2015;86:19–65. https://doi.org/10.1111/cbdd.12462.

    Article  PubMed  Google Scholar 

  34. Chandrika NT, Shrestha SK, Ngo HX, Garneau-Tsodikova S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg Med Chem. 2016;24:3680–6. https://doi.org/10.1016/j.bmc.2016.06.010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaur G, Kaur M, Silakari O. Benzimidazoles: an ideal privileged drug scaffold for the design of multitargeted anti-inflammatory ligands. Mini Rev Med Chem. 2014;14:747–67. https://doi.org/10.2174/1389557514666140820120518.

    Article  PubMed  CAS  Google Scholar 

  36. Yadav G, Ganguly S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: a mini-review. Eur J Medicinal Chem. 2015;97:419–43. https://doi.org/10.1016/j.ejmech.2014.11.053.

    Article  CAS  Google Scholar 

  37. Barker HA, Smyth RD, Weissbach H, Toohey JI, Ladd JN, Volcani BE. Isolation and properties of crystalline cobamide coenzymes containing benzimidazole or 5,6-dimethylbenzimidazole. J Biol Chem. 1960;235:480–8.

    Article  CAS  Google Scholar 

  38. Woolley DW. Some biological effects produced by benzimidazole and their reversal by purines. J Biol Chem. 1944;152:225–32.

    Article  CAS  Google Scholar 

  39. Cruz MC, Bartlett MS, Edlind TD. In vitro susceptibility of the opportunistic fungus Cryptococcus neoformans to anthelmintic benzimidazoles. Antimicrob Agents Chemother. 1994;38:378–80. https://doi.org/10.1128/aac.38.2.378.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Cruz MC, Edlind T. β-Tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiology. 1997;143:2003–8. https://doi.org/10.1099/00221287-143-6-2003.

    Article  PubMed  CAS  Google Scholar 

  41. Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, et al. The anti-helminthic compound mebendazole has multiple antifungal effects against Cryptococcus neoformans. Front Microbiol. 2017;8:535. https://doi.org/10.3389/fmicb.2017.00535.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Truong M, Monahan LG, Carter DA, Charles IG. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ. 2018;6:e4761-e. https://doi.org/10.7717/peerj.4761.

    Article  Google Scholar 

  43. Nixon GL, McEntee L, Johnson A, Farrington N, Whalley S, Livermore J, et al. Repurposing and reformulation of the antiparasitic agent flubendazole for treatment of cryptococcal meningoencephalitis, a neglected fungal disease. Antimicrob Agents Chemother. 2018;62:e01909–17. https://doi.org/10.1128/AAC.01909-17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Leopold Wager CM, Hole CR, Wozniak KL, Wormley FL Jr. Cryptococcus and phagocytes: complex interactions that influence disease outcome. Front Microbiol. 2016;7:105. https://doi.org/10.3389/fmicb.2016.00105.

    Article  PubMed  PubMed Central  Google Scholar 

  45. de Oliveira HC, Joffe LS, Simon KS, Castelli RF, Reis FCG, Bryan AM, et al. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model. Antimicrob Agents Chemother. 2020;64:e00286–20. https://doi.org/10.1128/AAC.00286-20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Seoane PI, May RC. Vomocytosis: what we know so far. Cell Microbiol. 2020;22:e13145. https://doi.org/10.1111/cmi.13145.

    Article  PubMed  CAS  Google Scholar 

  47. Sun N, Li D, Zhang Y, Killeen K, Groutas W, Calderone R. Repurposing an inhibitor of ribosomal biogenesis with broad anti-fungal activity. Sci Rep. 2017;7:17014. https://doi.org/10.1038/s41598-017-17147-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–83. https://doi.org/10.1128/CMR.00007-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gottschall DW, Theodorides VJ, Wang R. The metabolism of benzimidazole anthelmintics. Parasitol Today. 1990;6:115–24. https://doi.org/10.1016/0169-4758(90)90228-V.

    Article  PubMed  CAS  Google Scholar 

  50. Hardin TC, Najvar LK, Rizzo J, Fothergill AW, Rinaldi MG, Graybill JR. Discrepancy between in vitro and in vivo antifungal activity of albendazole. Med Mycol. 1997;35:153–8. https://doi.org/10.1080/02681219780001081.

    Article  CAS  Google Scholar 

  51. Saimot AG, Cremieux AC, Hay JM, Meulemans A, Giovanangeli MD, Delaitre B, et al. Albendazole as a potential treatment for human hydatidosis. Lancet. 1983;322:652–6. https://doi.org/10.1016/S0140-6736(83)92533-3.

    Article  Google Scholar 

  52. Michaelis M, Kleinschmidt MC, Bojkova D, Rabenau HF, Wass MN, Cinatl J. Omeprazole increases the efficacy of acyclovir against Herpes simplex Virus type 1 and 2. Front Microbiol. 2019;10:2790. https://doi.org/10.3389/fmicb.2019.02790.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. CVMP. Committee for Medicinal Products for Veterinary Use (CVMP). Assessment report for Panacur AquaSol (fenbendazole) European Medicines Agency. 2014. https://www.ema.europa.eu/en/medicines/veterinary/EPAR/panacur-aquasol. Accessed 3 June 2020.

  55. Villar D, Cray C, Zaias J, Altman NH. Biologic effects of fenbendazole in rats and mice: a review. J Am Assoc Lab Anim Sci. 2007;46:1559–6109.

    Google Scholar 

  56. Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH. Mechanism of intranasal drug delivery directly to the brain. Life Sci. 2018;195:44–52. https://doi.org/10.1016/j.lfs.2017.12.025.

    Article  PubMed  CAS  Google Scholar 

  57. Bicanic T, Bottomley C, Loyse A, Brouwer AE, Muzoora C, Taseera K, et al. Toxicity of amphotericin B deoxycholate-based induction therapy in patients with HIV-associated cryptococcal meningitis. Antimicrob Agents Chemother. 2015;59:7224–31. https://doi.org/10.1128/AAC.01698-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Girois SB, Chapuis F, Decullier E, Revol BGP. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis. 2005;24:119–30. https://doi.org/10.1007/s10096-005-1281-2.

    Article  PubMed  CAS  Google Scholar 

  59. Nett JE, Andes DR. Antifungal agents: spectrum of activity, pharmacology and clinical indications. Infect Dis Clin North Am. 2016;30:51–83. https://doi.org/10.1016/j.idc.2015.10.012.

    Article  PubMed  Google Scholar 

  60. Zavrel M, White TC. Medically important fungi respond to azole drugs: an update. Future Microbiol. 2015;10:1355–73. https://doi.org/10.2217/FMB.15.47.

    Article  PubMed  CAS  Google Scholar 

  61. Merry M, Boulware DR. Cryptococcal Meningitis treatment strategies affected by the explosive cost of flucytosine in the united states: a cost-effectiveness analysis. Clin Infect Dis. 2016;62:1564–8. https://doi.org/10.1093/cid/ciw151.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Research Support Foundation of the State of Minas Gerais) (FAPEMIG: APQ 03536/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Lang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.A.M., Ferreira, G.F. & Lang, K.L. Drug repositioning of benzimidazole anthelmintics in the treatment of cryptococcosis: a review. Med Chem Res 31, 26–39 (2022). https://doi.org/10.1007/s00044-021-02824-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02824-4

Keywords

Navigation