Skip to main content

Advertisement

Log in

A novel sight of the primary active compounds from Umbelliferae: focusing on mitochondria

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Mitochondria perform diverse interconnected functions, participating in energy metabolism, oxidative stress, calcium hemostasis, and apoptosis. It is therefore not surprising that mitochondria have emerged as a key factor in a series of chronic diseases, including metabolic diseases, cerebro-cardiovascular diseases, neurodegenerative diseases, and cancer, which are regarded as the new global health challenge. The family Umbelliferae enjoys an important medicinal status. Given the growing body of evidence about the close connection between Chinese herbs from the family Umbelliferae and mitochondria-related diseases, more attention is paid to elucidate the role of mitochondria in it. The review generalizes three classes of active compounds of Umbelliferae taking ten commonly-used herbs as an example, they are coumarins, phthalides, and phenolic acids respectively. Moreover, when it comes to the underlying mechanisms of these compounds to mitochondria-related diseases, we highlight the change of mitochondria-related enzymes, regulatory proteins, ions, signaling molecules, and so on. In conclusion, we propose a promising drug-designing strategy, mitochondria-targeted drugs referring to natural compounds of Umbelliferae that themselves are able to improve the mitochondrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

NAFLD:

non-alcoholic fatty liver disease

TCA:

tricarboxylic acid cycle

OXPHOS:

oxidative phosphorylation

CS:

citrate synthase

ICDH:

isocitrate dehydrogenase

α-KGDHC:

α-ketoglutarate dehydrogenase complex

ETC:

electron transport chain

SDH:

succinate dehydrogenase

MMP:

mitochondrial membrane potential

Opa1:

optic atrophy 1

Mfn1:

mitofusin 1

Mfn2:

mitofusin 2

DRP1:

dynamin-related protein 1

Fis1:

mitochondrial fission 1 protein

AMPK:

monophosphate-activated protein kinase

SIRT1:

sirtuins 1

PPARγ:

peroxisome proliferator-activated receptors γ

PCG-1α:

peroxisome proliferator-activated receptors γ coactivator-1α

MPTP:

mitochondrial permeability transition pore

SOD:

superoxide dismutase

GSH-Px:

glutathione peroxidase

CAT:

catalase

Nrf2:

nuclear factor erythroid 2-related factor 2

HO-1:

Heme Oxygenase-1

MCU:

mitochondrial calcium uniporter

Cyt c :

cytochrome c

Smac:

second mitochondria-derived activator of caspase

AIF:

apoptosis inducing factor

Endo G:

Endonuclease G

MOMP:

mitochondrial outer membrane permeabilization

HFD:

high-fat diet

STZ:

streptozotocin

GLUT4:

glucose transporter type 4

ACC:

acetyl-CoA carboxylase

FAS:

fatty acid synthase

SCD-1:

stearoyl-CoA desaturase-1

SREBP-1:

sterol-regulatory element binding proteins-1

OGD:

glucose and oxygen deprivation

MDH:

malate dehydrogenase

NRF-1:

nuclear respiratory factor-1

TFAM:

mitochondrial transcription factor A

AD:

Alzheimer’s Diseases

PD:

Parkinson Diseases

References

  1. Kalyanaraman B. Teaching the basics of repurposing mitochondria-targeted drugs: from Parkinson’s disease to cancer and back to Parkinson’s disease. Redox Biol. 2020;36:101665 https://doi.org/10.1016/j.redox.2020.101665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, et al. Unlocking the secrets of mitochondria in the cardiovascular system: path to a cure in heart Failure—a report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation. 2019;140:1205–16. https://doi.org/10.1161/circulationaha.119.040551

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1736–88. https://doi.org/10.1016/S0140-6736(18)32203-7

    Article  Google Scholar 

  4. Wei J, Gao Y-Z, Zhou J, Liu Z-W. Collection and sorting of medicinal plants in Chinese Apiaceae (Umbelliferae). Zhongguo Zhong Yao Za Zhi. 2019;44:5329–35. https://doi.org/10.19540/j.cnki.cjcmm.20191101.103

    Article  PubMed  Google Scholar 

  5. Bezawork-Geleta A, Rohlena J, Dong L, Pacak K, Neuzil J. Mitochondrial complex II: at the crossroads. Trends Biochem Sci. 2017;42:312–25. https://doi.org/10.1016/j.tibs.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9. https://doi.org/10.1016/j.ab.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  7. Tilokani L, Nagashima S, Paupe V, Prudent J. Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem. 2018;62:341–60. https://doi.org/10.1042/EBC20170104

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liesa M, Shirihai OS. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013;17:491–506. https://doi.org/10.1016/j.cmet.2013.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo J. 2008;27:433–46. https://doi.org/10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossigno R, Gilkerson R, Aggeler R, Yamagata K, Remington SJ, Capaldi RA. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004;64:985–93. https://doi.org/10.1158/0008-5472.can-03-1101

    Article  Google Scholar 

  11. Li J, Huang Q, Long X, Guo X, Sun X, Jin X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene. 2017;36:4901–12. https://doi.org/10.1038/onc.2017.98

    Article  CAS  PubMed  Google Scholar 

  12. Hardie DG. AMP-Activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014;34:31–55. https://doi.org/10.1146/annurev-nutr-071812-161148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin. 2013;45:51–60. https://doi.org/10.1093/abbs/gms108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, Lan F, et al. AMPK and SIRT1: a long-standing partnership? Am J Physiol Endocrinol Metab. 2010;298:E751–60. https://doi.org/10.1152/ajpendo.00745.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Canto C, Auwerx J. PGC-1 alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipido. 2009;20:98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4

    Article  CAS  Google Scholar 

  16. Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Meta. 2016;23:254–63. https://doi.org/10.1016/j.cmet.2015.12.009

    Article  CAS  Google Scholar 

  17. Brand MD. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Bio Med. 2016;100:14–31. https://doi.org/10.1016/j.freeradbiomed.2016.04.001

    Article  CAS  Google Scholar 

  18. Angelova PR, Abramov AY. Functional role of mitochondrial reactive oxygen species in physiology. Free Radic Bio Med. 2016;100:81–5. https://doi.org/10.1016/j.freeradbiomed.2016.06.005

    Article  CAS  Google Scholar 

  19. Trushina E, McMurray CT. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience. 2007;145:1233–48. https://doi.org/10.1016/j.neuroscience.2006.10.056

    Article  CAS  PubMed  Google Scholar 

  20. Gerle C. Mitochondrial F-ATP synthase as the permeability transition pore. Pharmacol Res. 2020;160. https://doi.org/10.1016/j.phrs.2020.105081

  21. Kinnally KW, Peixoto PM, Ryu S-Y, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta. 2011;1813:616–22. https://doi.org/10.1016/j.bbamcr.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  22. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94:909–50. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Stefani D, Patron M, Rizzuto R. Structure and function of the mitochondrial calcium uniporter complex. Biochim Biophys Acta Mol Cell Res. 2015;1853:2006–11. https://doi.org/10.1016/j.bbamcr.2015.04.008

    Article  CAS  Google Scholar 

  25. Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophy Acta-Bioenerg. 2009;1787:1324–33. https://doi.org/10.1016/j.bbabio.2009.01.019

    Article  CAS  Google Scholar 

  26. Madreiter-Sokolowski CT, Thomas C, Ristow M. Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biol. 2020;36. https://doi.org/10.1016/j.redox.2020.101678

  27. Giorgio V, Guo L, Bassot C, Petronilli V, Bernardi P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 2018;70:56–63. https://doi.org/10.1016/j.ceca.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  28. Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, et al. Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Bio Med. 2018;129:1–24. https://doi.org/10.1016/j.freeradbiomed.2018.08.034

    Article  CAS  Google Scholar 

  29. Dong Z, Shanmughapriya S, Tomar D, Siddiqui N, Lynch S, Nemani N, et al. Mitochondrial Ca2+ uniporter is a mitochondrial luminal redox sensor that augments MCU channel activity. Mol Cell. 2017;65:1014–1028. https://doi.org/10.1016/j.molcel.2017.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13:7254–63. https://doi.org/10.1158/1078-0432.ccr-07-1598

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999;399:483–7. https://doi.org/10.1038/20959

    Article  CAS  PubMed  Google Scholar 

  32. Melough MM, Chun OK. Dietary furocoumarins and skin cancer: A review of current biological evidence. Food Chem Toxicol. 2018;122:163–71. https://doi.org/10.1016/j.fct.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  33. Jing W-H, Song Y-L, Yan R, Wang Y-T. Identification of cytochrome P450 isoenzymes involved in metabolism of (+)-praeruptorin A, a calcium channel blocker, by human liver microsomes using ultra high-performance liquid chromatography coupled with tandem mass spectrometry. J Pharm Biomed. 2013;77:175–88. https://doi.org/10.1016/j.jpba.2013.01.023

    Article  CAS  Google Scholar 

  34. Bethea D, Fullmer B, Syed S, Seltzer G, Tiano J, Rischko C, et al. Psoralen photobiology and photochemotherapy: 50 years of science and medicine. J Dermatol Sci. 1999;19:78–88. https://doi.org/10.1016/s0923-1811(98)00064-4

    Article  CAS  PubMed  Google Scholar 

  35. Peruzzo R, Mattarei A, Azzolini M, Becker-Flegler KA, Romio M, Rigoni G, et al. Insight into the mechanism of cytotoxicity of membrane-permeant psoralenic Kv1.3 channel inhibitors by chemical dissection of a novel member of the family. Redox Biol. 2020;37. https://doi.org/10.1016/j.redox.2020.101705

  36. Caffieri S, Di Lisa F, Bolesani F, Facco M, Semenzato G, Dall’Acqua F, et al. The mitochondrial effects of novel apoptogenic molecules generated by psoralen photolysis as a crucial mechanism in PUVA therapy. Blood. 2007;109:4988–94. https://doi.org/10.1182/blood-2006-08-037192

    Article  CAS  PubMed  Google Scholar 

  37. Canton M, Caffieri S, Dall’Acqua F, Di Lisa F. PUVA-induced apoptosis involves mitochondrial dysfunction caused by the opening of the permeability transition pore. FEBS Lett. 2002;522:168–72. https://doi.org/10.1016/s0014-5793(02)02926-5

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka Y, Fujii W, Hori H, Kitagawa Y, Ozaki K. Relationship between coumarin-induced hepatocellular toxicity and mitochondrial function in rats. Food Chem Toxicol. 2016;90:1–9. https://doi.org/10.1016/j.fct.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Zhang C, Gao F, Fu Q, Fu C, He Y, et al. A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol. 2018;119:309–25. https://doi.org/10.1016/j.fct.2018.02.050

    Article  CAS  PubMed  Google Scholar 

  40. Wei W-L, Zeng R, Gu C-M, Qu Y, Huang L-F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116–41. https://doi.org/10.1016/j.jep.2016.05.023

    Article  CAS  PubMed  Google Scholar 

  41. Li S-L, Yan R, Tam Y-K, Lim G. Post-harvest alteration of the main chemical ingredients in Ligusticum chuanxiong HoRT. (Rhizoma chuanxiong). Chem Pharm Bull. 2007;55:140–4. https://doi.org/10.1248/cpb.55.140

    Article  CAS  Google Scholar 

  42. Yan R, Ko NL, Li S-L, Tam YK, Lin G. Pharmacokinetics and metabolism of ligustilide, a major bioactive component in Rhizoma Chuanxiong, in the rat. Drug Metab Dispos. 2008;36:400–8. https://doi.org/10.1124/dmd.107.017707

    Article  CAS  PubMed  Google Scholar 

  43. He C-Y, Wang S, Feng Y, Liang S, Lin X, Xu D-S, et al. Pharmacokinetics, tissue distribution and metabolism of senkyunolide I, a major bioactive component in Ligusticum chuanxiong Hort. (Umbelliferae). J Ethnopharmacol. 2012;142:706–13. https://doi.org/10.1016/j.jep.2012.05.047

    Article  CAS  PubMed  Google Scholar 

  44. Abdoulaye IA, Guo YJ. A review of recent advances in neuroprotective potential of 3-N-Butylphthalide and its derivatives. Biomed Res Int. 2016;2016. https://doi.org/10.1155/2016/5012341

  45. Xiao B, Su M, Kim EL, Hong J, Chung HY, Kim HS, et al. Synthesis of PPAR-γ activators inspired by the marine natural product, paecilocin A. Mar Drugs. 2014;12:926–39. https://doi.org/10.3390/md12020926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jackson KMP, Rathinasabapathy T, Esposito D, Komarnytsky S. Structural constraints and importance of caffeic acid moiety for anti-hyperglycemic effects of caffeoylquinic acids from chicory. Mol Nutr Food Res. 2017;61. https://doi.org/10.1002/mnfr.201601118

  47. Zdunska K, Dana A, Kolodziejczak A, Rotsztejn H. Antioxidant properties of ferulic acid and its possible application. Ski Pharm Phys. 2018;31:332–6. https://doi.org/10.1159/000491755

    Article  CAS  Google Scholar 

  48. Paiva LB, Goldbeck R, dos Santos WD, Squina FM. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharm Sci. 2013;49:395–411. https://doi.org/10.1590/s1984-82502013000300002

    Article  Google Scholar 

  49. Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165838 https://doi.org/10.1016/j.bbadis.2020.165838

    Article  CAS  PubMed  Google Scholar 

  50. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin. 2006;24:1–21. https://doi.org/10.1016/j.ncl.2005.10.004

    Article  PubMed  Google Scholar 

  51. Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer’s Disease. J Alzheimer’s Dis J Alzheimer’s Dis. 2018;62:1403–16. https://doi.org/10.3233/jad-170585

    Article  CAS  Google Scholar 

  52. Jang JH, Park JE, Han JS. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells. Nutr Res. 2020;74:52–61. https://doi.org/10.1016/j.nutres.2019.12.003

    Article  CAS  PubMed  Google Scholar 

  53. Tsuda S, Egawa T, Ma X, Oshima R, Kurogi E, Hayashi T. Coffee polyphenol caffeic acid but not chlorogenic acid increases 5’AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. J Nutr Biochem. 2012;23:1403–9. https://doi.org/10.1016/j.jnutbio.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  54. Bae U-J, Oh M-R, Jung T-S, Chae S-W, Park B-H. Decursin and decursinol angelate-rich Angelica gigas Nakai extract suppresses de novo lipogenesis and alleviates nonalcoholic fatty liver disease and dyslipidemia in mice fed a high fat diet. J Funct Foods. 2017;31:208–216. https://doi.org/10.1016/j.jff.2017.02.008

    Article  CAS  Google Scholar 

  55. Lee H-I, Lee M-K. Coordinated regulation of scopoletin at adipose tissue-liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol Lett. 2015;237:210–8. https://doi.org/10.1016/j.toxlet.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  56. Liao C-C, Ou T-T, Huang H-P, Wang C-J. The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up-regulation of AMP-activated kinase. J Sci Food Agr. 2014;94:1154–62. https://doi.org/10.1002/jsfa.6386

    Article  CAS  Google Scholar 

  57. Xu G, Huang K, Zhou J. Hepatic AMP Kinase as a potential target for treating nonalcoholic fatty liver disease: evidence from studies of natural products. Curr Med Chem. 2018;25:889–907. https://doi.org/10.2174/0929867324666170404142450

    Article  CAS  PubMed  Google Scholar 

  58. Zhao X, Xue J, Xie M. Osthole inhibits oleic acid/lipopolysaccharide-induced lipid accumulation and inflammatory response through activating PPARα signaling pathway in cultured hepatocytes. Exp Gerontol. 2019;119:7–13. https://doi.org/10.1016/j.exger.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  59. Zhao X, Xue J, Wang XL, Zhang Y, Deng M, Xie ML. Involvement of hepatic peroxisome proliferator-activated receptor α/γ in the therapeutic effect of osthole on high-fat and high-sucrose-induced steatohepatitis in rats. Int Immunopharmacol. 2014;22:176–81. https://doi.org/10.1016/j.intimp.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  60. Jiang T, Shi X, Yan Z, Wang X, Gun S. Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp Ther Med. 2019;18:2160–6. https://doi.org/10.3892/etm.2019.7820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han HS, Jeon H, Kang SC. Phellopterin isolated from Angelica dahurica reduces blood glucose level in diabetic mice. Heliyon. 2018;4:e00577 https://doi.org/10.1016/j.heliyon.2018.e00577

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhu WL, Zheng JY, Cai WW, Dai Z, Li BY, Xu TT, et al. Ligustilide improves aging-induced memory deficit by regulating mitochondrial related inflammation in SAMP8 mice. Aging. 2020;12:3175–89. https://doi.org/10.18632/aging.102793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen N, Zhou Z, Li J, Li B, Feng J, He D, et al. 3-n-butyphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Dev Ther. 2018;12:4261–71. https://doi.org/10.2147/dddt.s189472

    Article  CAS  Google Scholar 

  64. Anis E, Zafeer MF, Firdaus F, Islam SN, Anees Khan A, Ali A, et al. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother Res. 2020;34:214–26. https://doi.org/10.1002/ptr.6523

    Article  CAS  PubMed  Google Scholar 

  65. Zhou Y-f, Li L, Feng F, Yuan H, Gao D-k, Fu L-a. et al. Osthole attenuates spinal cord ischemia-reperfusion injury through mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction in rats. J Surg Res. 2013;185:805–14. https://doi.org/10.1016/j.jss.2013.06.044.

    Article  CAS  PubMed  Google Scholar 

  66. Xu Y-J, Mei Y, Qu Z-L, Zhang S-J, Zhao W, Fang J-S, et al. Ligustilide ameliorates memory deficiency in APP/PS1 transgenic mice via restoring mitochondrial dysfunction. Biomed Res Int. 2018;2018. https://doi.org/10.1155/2018/4606752

  67. Tian X, He W, Yang R, Liu Y. Dl-3-n-butylphthalide protects the heart against ischemic injury and H9c2 cardiomyoblasts against oxidative stress: involvement of mitochondrial function and biogenesis. J Biomed Sci. 2017;24:38 https://doi.org/10.1186/s12929-017-0345-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li L, Zhang B, Tao Y, Wang Y, Wei H, Zhao J, et al. DL-3-n-butylphthalide protects endothelial cells against oxidative/nitrosative stress, mitochondrial damage and subsequent cell death after oxygen glucose deprivation in vitro. Brain Res. 2009;1290:91–101. https://doi.org/10.1016/j.brainres.2009.07.020

    Article  CAS  PubMed  Google Scholar 

  69. Wang B-N, Wu C-B, Chen Z-M, Zheng P-P, Liu Y-Q, Xiong J, et al. DL-3-n-butylphthalide ameliorates diabetes-associated cognitive decline by enhancing PI3K/Akt signaling and suppressing oxidative stress. Acta Pharm Sin. 2021;42:347–60. https://doi.org/10.1038/s41401-020-00583-3

    Article  CAS  Google Scholar 

  70. Li X, Zhang J, Rong H, Zhang X, Dong M. Ferulic acid ameliorates MPP+/MPTP-induced oxidative stress via ERK1/2-dependent Nrf2 activation: translational implications for Parkinson Disease treatment. Mol Neurobiol. 2020;57:2981–95. https://doi.org/10.1007/s12035-020-01934-1

    Article  CAS  PubMed  Google Scholar 

  71. Chu Q, Zhu Y, Cao T, Zhang Y, Chang Z, Liu Y, et al. Studies on the neuroprotection of osthole on glutamate-induced apoptotic cells and an Alzheimer’s Disease mouse model via modulation oxidative stress. Appl Biochem Biotechnol. 2020;190:634–44. https://doi.org/10.1007/s12010-019-03101-2

    Article  CAS  PubMed  Google Scholar 

  72. Zhang S-Y, Ji S-X, Bai X-M, Yuan F, Zhang L-H, Li J. L-3-n-butylphthalide attenuates cognitive deficits in db/db diabetic mice. Metab Brain Dis. 2019;34:309–18. https://doi.org/10.1007/s11011-018-0356-6

    Article  CAS  PubMed  Google Scholar 

  73. Lang F, Qu J, Yin H, Li L, Zhi Y, Liu Y, et al. Apoptotic cell death induced by Z-Ligustilidein human ovarian cancer cells and role of NRF2. Food Chem Toxicol. 2018;121:631–8. https://doi.org/10.1016/j.fct.2018.09.041

    Article  CAS  PubMed  Google Scholar 

  74. Wang F, Ma J, Han F, Guo X, Meng L, Sun Y, et al. DL-3-n-butylphthalide delays the onset and progression of diabetic cataract by inhibiting oxidative stress in rat diabetic model. Sci Rep. 2016;6. https://doi.org/10.1038/srep19396

  75. Hu Y, Duan M, Liang S, Wang Y, Feng Y. Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Res. 2015;1605:39–48. https://doi.org/10.1016/j.brainres.2015.02.015

    Article  CAS  PubMed  Google Scholar 

  76. Ji H-J, Hu J-F, Wang Y-H, Chen X-Y, Zhou R, Chen N-H. Osthole improves chronic cerebral hypoperfusion induced cognitive deficits and neuronal damage in hippocampus. Eur J Pharm. 2010;636:96–101. https://doi.org/10.1016/j.ejphar.2010.03.038

    Article  CAS  Google Scholar 

  77. Liu W-B, Zhou J, Qu Y, Li X, Lu C-T, Xie K-L, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57:206–15. https://doi.org/10.1016/j.neuint.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  78. Pradhan P, Majhi Oi, Biswas A, Joshi VK, Sinha D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson’s model. Cell Death Dis. 2020;11. https://doi.org/10.1038/s41419-020-02942-8

  79. Kuang X, Du J-R, Liu Y-X, Zhang G-Y, Peng H-Y. Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats. Pharm Biochem Behav. 2008;88:213–21. https://doi.org/10.1016/j.pbb.2007.08.006

    Article  CAS  Google Scholar 

  80. Kuang X, Yao Y, Du JR, Liu YX, Wang CY, Qian ZM. Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Res. 2006;1102:145–53. https://doi.org/10.1016/j.brainres.2006.04.110

    Article  CAS  PubMed  Google Scholar 

  81. Tian Z, Wang J, Wang Y, Zhang M, Zhou Y. Effects of butylphthalide on cognitive decline in diabetic rats. Mol Med Rep. 2017;16:9131–6. https://doi.org/10.3892/mmr.2017.7700

    Article  CAS  PubMed  Google Scholar 

  82. Roy S, Metya SK, Sannigrahi S, Rahaman N, Ahmed F. Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine. 2013;44:369–79. https://doi.org/10.1007/s12020-012-9868-8

    Article  CAS  PubMed  Google Scholar 

  83. Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med. 2017;40:1444–56. https://doi.org/10.3892/ijmm.2017.3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ojha S, Javed H, Azimullah S, Khair SBA, Haque ME. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des Dev Ther. 2015;9:5499–510. https://doi.org/10.2147/dddt.s90616

    Article  CAS  Google Scholar 

  85. Liang G, Shi B, Luo W, Yang J. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behav Brain Funct. 2015;11. https://doi.org/10.1186/s12993-015-0064-x

  86. Wu Q, Mao Z, Liu J, Huang J, Wang N. Ligustilide attenuates ischemia reperfusion-induced hippocampal neuronal apoptosis via activating the PI3K/Akt pathway. Front Pharm. 2020;11:979 https://doi.org/10.3389/fphar.2020.00979

    Article  CAS  Google Scholar 

  87. Huang H, Ma ZC, Wang YG, Hong Q, Tan HL, Xiao CR, et al. Ferulic acid alleviates Aβ25-35- and lipopolysaccharide-induced PC12 cellular damage: a potential role in Alzheimer’s disease by PDE inhibition. Int J Clin Pharm Th. 2015;53:828–37. https://doi.org/10.5414/cp202295

    Article  CAS  Google Scholar 

  88. Park W, Park S, Song G, Lim W. Inhibitory effects of Osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress. Nutrients. 2019;11. https://doi.org/10.3390/nu11112777

  89. Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON. 2019;24:997–1002.

    PubMed  Google Scholar 

  90. Lin C-P, Lin C-S, Lin H-H, Li K-T, Kao S-H, Tsao S-M. Bergapten induces G1 arrest and pro-apoptotic cascade in colorectal cancer cells associating with p53/p21/PTEN axis. Environ Toxicol. 2019;34:303–11. https://doi.org/10.1002/tox.22685

    Article  CAS  PubMed  Google Scholar 

  91. Liu P-Y, Chang D-C, Lo Y-S, Hsi Y-T, Lin C-C, Chuang Y-C, et al. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ Toxicol. 2018;33:446–53. https://doi.org/10.1002/tox.22530

    Article  CAS  PubMed  Google Scholar 

  92. Wang F, Li J, Li R, Pan G, Bai M, Huang Q. Angelicin inhibits liver cancer growth in vitro and in vivo. Mol Med Rep. 2017;16:5441–9. https://doi.org/10.3892/mmr.2017.7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tong K, Xin C, Chen W. Isoimperatorin induces apoptosis of the SGC-7901 human gastric cancer cell line via the mitochondria-mediated pathway. Oncol Lett. 2017;13:518–24. https://doi.org/10.3892/ol.2016.5387

    Article  CAS  PubMed  Google Scholar 

  94. Bartnik M, Slawinska-Brych A, Zurek A, Kandefer-Szerszen M, Zdzisinska B. 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. J Ethnopharmacol. 2017;207:19–29. https://doi.org/10.1016/j.jep.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  95. Zheng YM, Lu AX, Shen JZ, Kwok AHY, Ho WS. Imperatorin exhibits anticancer activities in human colon cancer cells via the caspase cascade. Oncol Rep. 2016;35:1995–2002. https://doi.org/10.3892/or.2016.4586

    Article  CAS  PubMed  Google Scholar 

  96. Xu X-M, Zhang M-L, Zhang Y, Zhao L. Osthole induces lung cancer cell apoptosis through inhibition of inhibitor of apoptosis family proteins. Oncol Lett. 2016;12:3779–84. https://doi.org/10.3892/ol.2016.5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li G, He Y, Yao J, Huang C, Song X, Deng Y, et al. Angelicin inhibits human lung carcinoma A549 cell growth and migration through regulating JNK and ERK pathways. Oncol Rep. 2016;36:3504–12. https://doi.org/10.3892/or.2016.5166

    Article  CAS  PubMed  Google Scholar 

  98. Jiang G, Liu J, Ren B, Tang Y, Owusu L, Li M, et al. Anti-tumor effects of osthole on ovarian cancer cells in vitro. J Ethnopharmacol. 2016;193:368–376. https://doi.org/10.1016/j.jep.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  99. Ferlazzo N, Cirmi S, Russo M, Trapasso E, Ursino MR, Lombardo GE, et al. NF-κB mediates the antiproliferative and proapoptotic effects of bergamot juice in HepG2 cells. Life Sci. 2016;146:81–91. https://doi.org/10.1016/j.lfs.2015.12.040

    Article  CAS  PubMed  Google Scholar 

  100. Yang H, Xiong J, Luo W, Yang J, Xi T. 8-Methoxypsoralen induces intrinsic apoptosis in HepG2 Cells: involvement of reactive oxygen species generation and ERK1/2 pathway inhibition. Cell Physiol Biochem. 2015;37:361–74. https://doi.org/10.1159/000430360

    Article  CAS  PubMed  Google Scholar 

  101. Rahman MA, Kim N-H, Yang H, Huh S-O. Angelicin induces apoptosis through intrinsic caspase-dependent pathway in human SH-SY5Y neuroblastoma cells. Mol Cell Biochem. 2012;369:95–104. https://doi.org/10.1007/s11010-012-1372-1

    Article  CAS  PubMed  Google Scholar 

  102. Luo K-W, Sun J-G, Chan JY-W, Yang L, Wu S-H, Fung K-P, et al. Anticancer effects of Imperatorin isolated from Angelica dahurica: induction of apoptosis in HepG2 cells through both death-receptor- and mitochondria-mediated pathways. Chemotherapy. 2011;57:449–59. https://doi.org/10.1159/000331641

    Article  CAS  PubMed  Google Scholar 

  103. Fujioka T, Furumi K, Fujii H, Okabe H, Mihashi K, Nakano Y, et al. Antiproliferative constituents from Umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem Pharm Bull. 1999;47:96–100. https://doi.org/10.1248/cpb.47.96

    Article  CAS  Google Scholar 

  104. Ma J, Mei J, Lu J, Wang Y, Hu M, Ma F, et al. Ligustilide promotes apoptosis of cancer-associated fibroblasts via the TLR4 pathways. Food Chem Toxicol. 2020;135. https://doi.org/10.1016/j.fct.2019.110991

  105. Changizi Z, Moslehi A, Rohani AH, Eidi A. Chlorogenic acid inhibits growth of 4T1 breast cancer cells through involvement in Bax/Bcl2 pathway. J Cancer Res Ther. 2020;16:1435–42. https://doi.org/10.4103/jcrt.JCRT_245_19

    Article  CAS  PubMed  Google Scholar 

  106. Pelinson LP, Assmann CE, Palma TV, Manica da Cruz IB, Pillat MM, Manica A, et al. Antiproliferative and apoptotic effects of caffeic acid on SK-Mel-28 human melanoma cancer cells. Mol Biol Rep. 2019;46:2085–92. https://doi.org/10.1007/s11033-019-04658-1

    Article  CAS  PubMed  Google Scholar 

  107. Liao K-F, Chiu T-L, Huang S-Y, Hsieh T-F, Chang S-F, Ruan J-W, et al. Anti-cancer effects of Radix Angelica Sinensis (Danggui) and N-Butylidenephthalide on gastric cancer: implications for REDD1 activation and mTOR inhibition. Cell Physiol Biochem. 2018;48:2231–46. https://doi.org/10.1159/000492641

    Article  CAS  PubMed  Google Scholar 

  108. Chiu S-C, Chiu T-L, Huang S-Y, Chang S-F, Chen S-P, Pang C-Y et al. Potential therapeutic effects of N-butylidenephthalide from Radix Angelica Sinensis (Danggui) in human bladder cancer cells. BMC Complem Altern M. 2017;17. https://doi.org/10.1186/s12906-017-2034-3

  109. Li K, Ding D, Zhang M. Neuroprotection of Osthole against cerebral ischemia/reperfusion injury through an anti-apoptotic pathway in rats. Biol Pharm Bull. 2016;39:336–42. https://doi.org/10.1248/bpb.b15-00699

    Article  CAS  PubMed  Google Scholar 

  110. Yang B, Ma G, Liu Y. Z-Ligustilide ameliorates diabetic rat retinal dysfunction through anti apoptosis and an antioxidation pathway. Medical Science Monitor: Int J Clin Exp Med. 2020;26. https://doi.org/10.12659/msm.925087

  111. Lei H, Zhao C-Y, Liu D-M, Zhang Y, Li L, Wang X-L, et al. l-3-n-Butylphthalide attenuates β-amyloid-induced toxicity in neuroblastoma SH-SY5Y cells through regulating mitochondrion-mediated apoptosis and MAPK signaling. J Asian Nat Prod Res. 2014;16:854–64. https://doi.org/10.1080/10286020.2014.939586

    Article  CAS  PubMed  Google Scholar 

  112. Liu C-Y, Zhao Z-H, Chen Z-T, Che C-H, Zou Z-Y, Wu X-M, et al. DL-3-n-butylphthalide protects endothelial cells against advanced glycation end product-induced injury by attenuating oxidative stress and inflammation responses. Exp Ther Med 2017;14:2241–8. https://doi.org/10.3892/etm.2017.4784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Azietaku JT, Ma H, Yu X-A, Li J, Oppong MB, Cao J, et al. A review of the ethnopharmacology, phytochemistry and pharmacology of Notopterygium incisum. J Ethnopharmacol. 2017;202:241–55. https://doi.org/10.1016/j.jep.2017.03.022

    Article  CAS  PubMed  Google Scholar 

  114. Ma J, Huang J, Hua S, Zhang Y, Zhang Y, Li T, et al. The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata—a review. J Ethnopharmacol. 2019;231:152–69. https://doi.org/10.1016/j.jep.2018.10.040

    Article  CAS  PubMed  Google Scholar 

  115. Wang S, Qian Y, Sun M, Jia L, Hu Y, Li X, et al. Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophilic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics. Arab J Chem. 2020;13:8835–47. https://doi.org/10.1016/j.arabjc.2020.10.013

    Article  CAS  Google Scholar 

  116. Zhang Y-B, Deng G-G, Wang T-X, Liu L, Yang X-W. Tissue distribution study of Angelica dahurica cv. Yubaizhi in rat by ultra-performance liquid chromatography with tandem mass spectrometry. J Pharm Biomed. 2019;174:43–9. https://doi.org/10.1016/j.jpba.2019.05.046

    Article  CAS  Google Scholar 

  117. Jia M, Li Y-M, Zhai X, Yang Y, Li C-Y, Zhang Q-Y, et al. Qualitative analysis and quality evaluation of Cnidium monnieri using UHPLC-ESI-Q-TOF/MS. Chin Herb Med. 2016;8:323–30. https://doi.org/10.1016/S1674-6384(16)60058-8

    Article  Google Scholar 

  118. Yang M, Li X, Zhang L, Wang C, Ji M, Xu J, et al. Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Glehnia: A Systematic Review. Evid Based Complement Alter Med. 2019;2019:1253493 https://doi.org/10.1155/2019/1253493

    Article  Google Scholar 

  119. Song Y, Jing W, Yan R, Wang Y. Research progress of the studies on the roots of Peucedanum praeruptorum dunn (Peucedani radix). Pak J Pharm Sci. 2015;28:71–81.

    PubMed  Google Scholar 

  120. Sarkhail P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: a review. J Ethnopharmacol. 2014;156:235–70. https://doi.org/10.1016/j.jep.2014.08.034

    Article  CAS  PubMed  Google Scholar 

  121. Liu RM, Sun QH, Shi YR, Kong LY. Isolation and purification of cournarin compounds from the root of Peucedanum decursivum (Miq.) Maxim by high-speed counter-current chromatography. J Chromatogr A. 2005;1076:127–32. https://doi.org/10.1016/j.chroma.2005.04.041

    Article  CAS  PubMed  Google Scholar 

  122. Xu F, Ye Z, Tao S, Liu W, Su J, Fang X, et al. Ligustilide alleviates podocyte injury via suppressing the SIRT1/NF-κB signaling pathways in rats with diabetic nephropathy. Ann Transl Med. 2020;8:1154 https://doi.org/10.21037/atm-20-5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guo S, Wang G, Yang Z. Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. J Recept Signal Transduct Res. 2021;41:85–92. https://doi.org/10.1080/10799893.2020.1789877

    Article  CAS  PubMed  Google Scholar 

  124. Zafeer MF, Firdaus F, Anis E, Mobarak Hossain M. Prolong treatment with Trans-ferulic acid mitigates bioenergetics loss and restores mitochondrial dynamics in streptozotocin-induced sporadic dementia of Alzheimer’s type. Neurotoxicology. 2019;73:246–57. https://doi.org/10.1016/j.neuro.2019.04.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanghai (No: 19ZR1457700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Shen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Ni, N., Hong, Y. et al. A novel sight of the primary active compounds from Umbelliferae: focusing on mitochondria. Med Chem Res 31, 217–231 (2022). https://doi.org/10.1007/s00044-021-02822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02822-6

Keywords

Navigation