Skip to main content

Advertisement

Log in

Efficient synthesis and evaluation of antiviral and antitumor activity of novel 3-phosphonylated thiazolo[3,2-a]oxopyrimidines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 3-phosphonylated thiazolo[3,2-a]oxopyrimidines 3a-k was synthesized for the first time by the reactions of chloroethynylphosphonates with 5,6-disubstituted 2-thiouracils. In vitro antiviral activities have shown that the compounds 1i, 1j, 3b and 3e were shown activity against influenza A virus. In vitro antitumor activity was conducted for all compounds against human erythroleukemia (K562) and cervical carcinoma (HeLa) cell lines by MTS assay. Among targeted compounds 3c, 3h and 3j were active against human erythroleukemia (K562) cell line, while 3c and 3j were active against cervical carcinoma (HeLa) cell line. It was discovered that HeLa cells after treatment with compounds 3c and 3j significantly reduced the number of cells with stress fibers and with filopodium-like membrane protrusions. It was concluded that targeted compounds have a cytostatic effect, which could lead to a decrease in the formation of actin filaments and also in the number of filopodium-like membrane protrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhao L, Yan Y, Dai Q, Li X, Xu K, Zou G, et al. Development of novel anti -influenza thiazolides with 2 relatively broad-spectrum antiviral potentials.antimicrob. Agents Chemother. 2020;64:e00222–20. https://doi.org/10.1128/AAC.00222-20

    Article  CAS  Google Scholar 

  2. Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, et al. Inhibition of HBV transcription from cccDNA with nitazoxanide by targeting the HBx–DDB1 interaction. Cell Mol Gastroenterol Hepatol. 2019;7:297–312. https://doi.org/10.1016/j.jcmgh.2018.10.010

    Article  PubMed  Google Scholar 

  3. Munir M, Rafique S, Ali A, Idrees M, Min Kang S. Calculation of wiener indices of thiazolides: the potent inhibitors of hepatitis B virus and hepatitis C virus replication. Hepat Mon. 2018;18:e67709. https://doi.org/10.5812/hepatmon.67709

    Article  CAS  Google Scholar 

  4. Zuccaro V, Lombardi A, Asperges E, Sacchi P, Bruno R. PK/PD and antiviral activity of anti-HCV therapy: is there still a role in the choice of treatment? Expert Opin Drug Metab Toxicol. 2020;16:97–101. https://doi.org/10.1080/17425255.2020.1721459

    Article  CAS  PubMed  Google Scholar 

  5. Ozyilmaz E. Antiviral Agents. J Crit Intensive Care. 2020;11:27–29. https://doi.org/10.37678/dcybd.2020.2380

    Article  Google Scholar 

  6. Blot N, Schneider P, Young P, Janvresse C, Dehesdin D, Tron P, et al. Treatment of an acyclovir and foscarnet-resistant herpes simplex virus infection with cidofovir in a child after an unrelated bone marrow transplant. Bone Marrow Transpl. 2000;26:903–5. https://doi.org/10.1038/sj.bmt.1702591.

    Article  CAS  Google Scholar 

  7. Cornely OA, Hoenigl M. Infection Management in Hematology. Hematologic Malignancies. Cham: Springer; 2021.

    Book  Google Scholar 

  8. El Haddad L, Ghantoji S, Park A, Batista M, Schelfhout J, Hachem J, et al. Clinical and economic burden of pre-emptive therapy of cytomegalovirus infection in hospitalized allogeneic hematopoietic cell transplant recipients. J Med Virol. 2020;92:86–95. https://doi.org/10.1002/jmv.25574

    Article  CAS  PubMed  Google Scholar 

  9. Han MS, Choi EH, Lee HJ, Yun KW, Kang HJ, Hong KT, et al. Cytomegalovirus disease in a retinoblastoma cohort: the role of preemptive screening. Pediatr Blood Cancer. 2019;67:e28101. https://doi.org/10.1002/pbc.28101

    Article  PubMed  Google Scholar 

  10. De Lima Moreira F, Marques MP, Duarte G, Lanchote VL. Determination of raltegravir and raltegravir glucuronide in human plasma and urine by LC–MS/MS with application in a maternal-fetal pharmacokinetic study. J Pharm Biomed Anal. 2020;117:112838. https://doi.org/10.1016/j.jpba.2019.112838

    Article  CAS  Google Scholar 

  11. Svarovskaia ES, Dvory-Sobol H, Parkin N, Hebner C, Gontcharova V, Martin R. Infrequent development of resistance in genotype 1–6 hepatitis C virus–infected subjects treated with sofosbuvir in phase 2 and 3 clinical trials. Clin Infect Dis. 2014;59:1666–74. https://doi.org/10.1093/cid/ciu697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuchkov K, Chayrov R, Hinkov A, Todorov D, Shishkova K, Stankova IG. Modifications on the heterocyclic base of ganciclovir, penciclovir, acyclovir - syntheses and antiviral properties. Nucleosides, Nucleotides Nucleic Acids. 2020;39:979–90. https://doi.org/10.1080/15257770.2020.1725043

    Article  CAS  PubMed  Google Scholar 

  13. Mohamed SF, Flefel EM, Amr AE-GE, Abd El-Shafy D. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur J Med Chem. 2010;45:1494–501. https://doi.org/10.1016/j.ejmech.2009.12.057

    Article  CAS  PubMed  Google Scholar 

  14. Fatima S, Sharma A, Saxena R, Tripathi R, Shukla SK, Pandey SK, et al. One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur J Med Chem. 2012;55:195–204. https://doi.org/10.1016/j.ejmech.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  15. Yaragatti NB, Kulkarni MV, Ghate MD, Hebbar SS, Hegde GR. Synthesis and biological evaluation of some new coumarinyl thiazolopyrimidinones. J Sulfur Chem. 2010;31:123–33. https://doi.org/10.1080/17415990903569544

    Article  CAS  Google Scholar 

  16. Sayed M, Kamal El-Dean AM, Ahmed M, Hassanien R. Design, synthesis, and characterization of novel pyrimidines bearing indole as antimicrobial agents. J Chin Chem Soc. 2019;66:218–25. https://doi.org/10.1002/jccs.201800115

    Article  CAS  Google Scholar 

  17. Morsy HA, Moustafa AH. A facile approach for synthesis of thiazines-, thiazoles- and triazoles-annulated 6-styryl-2-thiouracil derivative. J Iran Chem Soc. 2020;17:119–25. https://doi.org/10.1007/s13738-019-01760-w

    Article  CAS  Google Scholar 

  18. Mohamed MM, Ali KKH, Eslam MA, AbeerM El-N. Design, synthesis of new pyrimidine derivatives as anticancer and antimicrobial agents. Synth Commun. 2017;47:1441–57. https://doi.org/10.1080/00397911.2017.1332223

    Article  CAS  Google Scholar 

  19. El-Borai MA, Rizk HF, Ibrahim SA, El-Sayed HF. Microwave assisted synthesis of fused thiazoles in multicomponent system and their in vitro antitumor, antioxidant, and antimicrobial activities. J Heterocycl Chem. 2017;54:1031–41. https://doi.org/10.1002/jhet.2671

    Article  CAS  Google Scholar 

  20. Hassan MZ, Alsayari A, Osman H, Ali MA, Muhsinah AB, Ahsan MJ. Synthesis, and evaluation of coumarin hybrids as antimycobacterial agents. ActaPoloniaePharmaceutica – Drug Res. 2019;76:1029–36. https://doi.org/10.32383/appdr/112406

    Article  CAS  Google Scholar 

  21. Ramadan SK, El-Helw EAE, Sallam HA. Cytotoxic and antimicrobial activities of some novel heterocycles employing 6-(1,3-diphenyl1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4- tetrahydropyrimidine-5-carbonitrile. Heterocycl Commun. 2019;25:107–15. https://doi.org/10.1515/hc-2019-0008

    Article  CAS  Google Scholar 

  22. Salem MS, Farhat M, Errayes AO, Madkour HM. Antioxidant activity of novel fused heterocyclic compounds derived from tetrahydropyrimidine derivative. Chem Pharm Bull. 2015;63:866–72. https://doi.org/10.1248/cpb.c15-00452

    Article  CAS  Google Scholar 

  23. Christopherson RI, Lyons SD. Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents. Med Res Rev. 1990;10:505–48. https://doi.org/10.1002/med.2610100406

    Article  CAS  PubMed  Google Scholar 

  24. Filatov AS, Knyazev NA, Shmakov SV, Bogdanov AA, Ryazantsev MN, Shtyrov AA, et al. Concise synthesis of tryptanthrin spiro analogues with in vitro antitumor activity based on one-pot, three-component 1,3-dipolar cycloaddition of azomethine ylides to сyclopropenes. Synthesis. 2019;51:713–29. https://doi.org/10.1055/s-0037-1611059.

    Article  CAS  Google Scholar 

  25. Mirgayazova R, Khadiullina R, Mingaleeva R, Chasov V, Gomzikova M, Garanina E, et al. Novel Isatin-based activator of p53 transcriptional functions in tumor cells. Mol Biol Res Commun. 2019;8:119–28. https://doi.org/10.22099/mbrc.2019.34179.1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang S, Filatov AS, Lozovskiy SV, Shmakov SV, Khoroshilova OV, Larina AG, et al. Construction of Spiro[3-azabicyclo[3.1.0]hexanes] via 1,3-Dipolar Cycloaddition of 1,2-Diphenylcyclopropenes to Ninhydrin-Derived Azomethine Ylides. Synthesis. 2021;53:2114–32. https://doi.org/10.1055/a-1360-9716

    Article  CAS  Google Scholar 

  27. Raffa D, Daidone G, Maggio B, Cascioferro S, Plescia F, Schillaci D. Synthesis and antileukemic activity of new 3-(5-methylisoxazol-3-yl) and 3-(pyrimidin-2-yl)-2-styrylquinazolin-4(3H)-ones. Il Farm. 2004;59:451–5. https://doi.org/10.1016/j.farmac.2003.10.006

    Article  CAS  Google Scholar 

  28. Jeanneau-Nicolle E, Benoit-Guyod M, Namil A, Leclerc G. New thiazolo[3,2-a]pyrimidine derivatives, synthesis and structure-activity relationships. Eur J Med Chem. 1992;27:115–20. https://doi.org/10.1016/0223-5234(92)90099-M

    Article  CAS  Google Scholar 

  29. Youssef MSK, Ahmed RA, Abbady MS, Abdel-Mohsen SA, Omar AA. Reactions of 4-(2-aminothiazole-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline. Synthesis of thiazolo[3,2-a]pyrimidine and imidazo[2,1-b]thiazole derivatives. Monatsh Chem. 2008;139:553–9. https://doi.org/10.1007/s00706-007-0817-9

    Article  CAS  Google Scholar 

  30. Veretennikov EA, Pavlov AV. Synthesis of 5H-[1,3]Thiazolo[3,2-a]pyrimidin-5-one Derivatives. Russ J Org Chem. 2013;49:575–9. https://doi.org/10.1134/s1070428013040143

    Article  CAS  Google Scholar 

  31. Frolova TV, Kim DG, Sharutin VV, Shalkova EN. Synthesis and Heterocyclization of 2-{[2-(4-Bromophenyl)-2-oxoethyl]sulfanyl}pyrimidin-4(3H)-ones. Russ J Org Chem. 2016;52:96–98.

    Article  CAS  Google Scholar 

  32. Balalaie S, Bararjanian M, Sheikh‐Ahmadi M, Hekmat S, Salehi P. Diammonium hydrogen phosphate: an efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synth Commun. 2007;37:1097–108. https://doi.org/10.1080/00397910701196579

    Article  CAS  Google Scholar 

  33. Krylov AS, Petrosian AA, Piterskaya JL, Svintsitskaya NI, Dogadina AV. Synthesis of ([1,2,4]triazolo[4,3-a]pyridin-3-ylmethyl)phosphonates and their benzo derivatives via 5-exo-dig cyclization. Beilstein J Org Chem. 2019;15:1563–8. https://doi.org/10.3762/bjoc.15.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kidwai M, Saxena S, Mohan R, Venkataramanan R. A novel one pot synthesis of nitrogen containing heterocycles: an alternate methodology to the Biginelli and Hantzsch reactions. J Chem Soc Perkin Trans 1. 2002;1:1845–6. https://doi.org/10.1039/b205539m

    Article  CAS  Google Scholar 

  35. Khudina OG, Ivanova AE, Burgart YV, Pervova MG, Shatunova TV, Borisevich SS, et al. Alkylation of 6-Polyfluoroalkyl-2-thiouracils with Haloalkanes. Russ J Org Chem. 2019;55:782–91. https://doi.org/10.1134/s1070428019060071

    Article  CAS  Google Scholar 

  36. Ivanova AE, Khudina OG, Burgart YV, Pervova MG, Ezhikova MA, Kodess MI, et al. 6-Trifl uoromethyl-2-thiouracil and its analogs in reactions with 4-bromobutyl acetate and 2-bromoacetophenone. Russ Chem Bull. 2019;68:1190–5. https://doi.org/10.1007/s11172-019-2538-8.

    Article  CAS  Google Scholar 

  37. Kaskevich KI, Babushkina AA, Gurzhiy VV, Egorov DM, Svintsitskaya NI, Dogadina AV. Synthesis of 3(2)-phosphonylated thiazolo[3,2-a]oxopyrimidines. Beilstein J Org Chem. 2020;16:1947–54. https://doi.org/10.3762/bjoc.16.161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu H, Zhang YI, Huang J, Chen W. Copper-catalyzed synthesis of N-fused heterocycles through regioselective 1,2-aminothiolation of 1,1-dibromoalkenes. Org Lett. 2010;12:3704–7. https://doi.org/10.1021/ol101563f

    Article  CAS  PubMed  Google Scholar 

  39. Egorov DM, Babushkina AA, Leonenok VE, Chekalov AP, Piterskaya Yu L. Synthesis of 3-phosphorylated thiazolo[3,2-a]pyrimidine-6-carboxylates. Russ J Gen Chem. 2020;90:326–8. https://doi.org/10.1134/S1070363220020267

    Article  Google Scholar 

  40. Egorov DM, Piterskaya YL, Dogadina AV. Reaction of Chloroethynylphosphonates with 1-Methyl-3H-imidazole-2-thiones. Russ J Gen Chem. 2015;85:502–4. https://doi.org/10.1134/S1070363215020255

    Article  CAS  Google Scholar 

  41. Tojkander S, Gateva G, Lappalainen P. Actin stress fibers – assembly, dynamics and biological roles. J Cell Sci. 2012;125:1855–64. https://doi.org/10.1242/jcs.098087

    Article  CAS  PubMed  Google Scholar 

  42. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol. 2003;5:711–9. https://doi.org/10.1038/ncb1019

    Article  CAS  PubMed  Google Scholar 

  43. Sun L, Zheng J, Wang Q, Song R, Liu H, Meng R, et al. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability. FASEB J. 2016;30:578–89.

    Article  CAS  Google Scholar 

  44. Knyazev NA, Shmakov SV, Pechkovskaya SA, Filatov AS, Stepakov AV, Boitsov VM, et al. Identification of spiro-fused [3-azabicyclo[3.1.0]hexane]oxindoles as potential antitumor agents: initial in vitro evaluation of anti-proliferative effect and actin cytoskeleton transformation in 3T3 and 3T3-SV40 fibroblast. Int J Mol Sci. 2021;22:8264. https://doi.org/10.3390/ijms22158264

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aseervatham J. Cytoskeletal remodeling in cancer. Biology. 2020;9:385. https://doi.org/10.3390/biology9110385

    Article  CAS  PubMed Central  Google Scholar 

  46. Spano A, Monaco G, Barni S, Sciola L. Cisplatin treatment of NIH/3T3 cultures induces a form of autophagic death in polyploid cells. Histol Histopathol. 2008;23:717–30. https://doi.org/10.14670/HH-23.717

    Article  CAS  PubMed  Google Scholar 

  47. Bonello TT, Stehn JR, Gunning PW. New approaches to targeting the actin cytoskeleton for chemotherapy. Future Med Chem. 2009;1:1311–31. https://doi.org/10.4155/fmc.09.99

    Article  CAS  PubMed  Google Scholar 

  48. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol. 2018;6:17 https://doi.org/10.3389/fcell.2018.00017

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yu H, Mouw JK, Weaver VM. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 2011;21:47–56. https://doi.org/10.1016/j.tcb.2010.08.015

    Article  PubMed  Google Scholar 

  50. Brayford S, Schevzov G, Vos J, Gunning P. The role of the actin cytoskeleton in cancer and its potential use as a therapeutic target. In: Schatten H, ed. The Cytoskeleton in Health and Disease. New York, NY: Springer New York; 2015. https://doi.org/10.1007/978-1-4939-2904-7_16.

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Russian Foundation for Basic Research (Grant no. 19-03-00365) and the Ministry of Education and Science of the Russian Federation (0791-2020-0006). This research made use of resources from the Engineering Centre of Saint-Petersburg State Institute of Technology, the Centre for Chemical Analysis and Materials, and the Center for X-ray Diffraction Methods of Saint-Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitali M. Boitsov.

Ethics declarations

Conflict of interest

The authors declare no cmpeting interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babushkina, A.A., Dogadina, A.V., Egorov, D.M. et al. Efficient synthesis and evaluation of antiviral and antitumor activity of novel 3-phosphonylated thiazolo[3,2-a]oxopyrimidines. Med Chem Res 30, 2203–2215 (2021). https://doi.org/10.1007/s00044-021-02801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02801-x

Keywords

Navigation