Skip to main content
Log in

Isatin-linked 4,4-dimethyl-5-methylene-4,5-dihydrothiazole-2-thiols for inhibition of acetylcholinesterase

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel isatin-linked 4,4-dimethyl-5-methylene-4,5-dihydrothiazole-2-thiols (IT2Ts) 1a1g were designed as acetylcholinesterase (AChE) inhibitors capable of interacting with both the catalytic active site (CAS) and peripheral anionic site (PAS) of the enzyme simultaneously. The target IT2Ts were prepared through a short synthesis in moderate yield. The most potent inhibitors of this series 1b and 1c (IC50 = 18.2 and 27.5 μM, respectively) outperformed rivastigmine and were comparable to galantamine, both clinically used AChE inhibitors. Furthermore, 1b displayed non-competitive inhibition patterns in kinetic studies, whereas molecular modeling predicted a simultaneous interaction with both the CAS and PAS. In silico methods predicted several promising drug-like characteristics of 1b. Taken together, these results indicate 1b warrants further investigation as a multitarget-directed ligand for AChE inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talita HF-V, Isabella MG, Flavia RS, Fabiola MR. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14:101–15. https://doi.org/10.2174/1570159X13666150716165726.

    Article  Google Scholar 

  2. Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. npj Parkinson Dis. 2016;2:16001 https://doi.org/10.1038/npjparkd.2016.1.

    Article  CAS  Google Scholar 

  3. Evoli A. Myasthenia gravis: new developments in research and treatment. Curr Opin Neurol. 2017;30:464–70.

    Article  CAS  PubMed  Google Scholar 

  4. Alzheimer’s Association Report. 2021 Alzheimer’s disease facts and figures. Alzheimer Dementia. 2021;17:327–406. https://doi.org/10.1002/alz.12328.

  5. Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;308:1403 https://doi.org/10.1016/S0140-6736(76)91936-X.

    Article  Google Scholar 

  6. Craig LA, Hong NS, McDonald RJ. Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev. 2011;35:1397–409. https://doi.org/10.1016/j.neubiorev.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184 https://doi.org/10.1126/science.1566067.

    Article  CAS  PubMed  Google Scholar 

  8. Kurz A, Perneczky R. Amyloid clearance as a treatment target against Alzheimer’s disease. J Alzheimer Dis. 2011;24:61–73. https://doi.org/10.3233/JAD-2011-102139.

    Article  CAS  Google Scholar 

  9. Ittner LM, Götz J. Amyloid-β and tau — a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci. 2011;12:67–72. https://doi.org/10.1038/nrn2967.

    Article  Google Scholar 

  10. Savelieff MG, Lee S, Liu Y, Lim MH. Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS Chem Biol. 2013;8:856–65. https://doi.org/10.1021/cb400080f.

    Article  CAS  PubMed  Google Scholar 

  11. Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal. 2010;14:1275–88. https://doi.org/10.1089/ars.2010.3359

    Article  CAS  PubMed  Google Scholar 

  12. Quintanilla RA, Orellana JA, von Bernhardi R. Understanding risk factors for Alzheimer’s disease: Interplay of neuroinflammation, connexin-based communication and oxidative stress. Arch Med Res. 2012;43:632–44. https://doi.org/10.1016/j.arcmed.2012.10.016.

    Article  CAS  PubMed  Google Scholar 

  13. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta. 2014;1842:1219–31. https://doi.org/10.1016/j.bbadis.2013.09.010.

    Article  CAS  PubMed  Google Scholar 

  14. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm. 2006;113:1625–44. https://doi.org/10.1007/s00702-006-0579-2.

    Article  CAS  PubMed  Google Scholar 

  15. Dhillon S. Rivastigmine transdermal patch. Drugs. 2011;71:1209–31. https://doi.org/10.2165/11206380-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  16. Raina P, Santaguida P, Ismaila A, Patterso C, Cowan D, Levine M, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148:379–97. https://doi.org/10.7326/0003-4819-148-5-200803040-00009.

    Article  PubMed  Google Scholar 

  17. Sun Y, Lai M-S, Lu C-J, Chen R-C. How long can patients with mild or moderate Alzheimer’s dementia maintain both the cognition and the therapy of cholinesterase inhibitors: a national population-based study. Eur J Neurol. 2008;15:278–83. https://doi.org/10.1111/j.1468-1331.2007.02049.x.

    Article  CAS  PubMed  Google Scholar 

  18. Ames DJ, Bhathal PS, Davies BM, Fraser JRE. Hepatotoxicity of tetrahydroacridine. Lancet. 1988;331:887 https://doi.org/10.1016/S0140-6736(88)91636-4.

    Article  Google Scholar 

  19. Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact. 2010;187:10–22. https://doi.org/10.1016/j.cbi.2010.01.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–6. https://doi.org/10.1021/jm300871x.

    Article  CAS  PubMed  Google Scholar 

  21. Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, et al. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA. 1993;90:9031 https://doi.org/10.1073/pnas.90.19.9031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC. A structural motif of acetylcholinesterase that promotes amyloid β-peptide fibril formation. Biochemistry. 2001;40:10447–57. https://doi.org/10.1021/bi0101392.

    Article  PubMed  Google Scholar 

  23. Bartolini M, Bertucci C, Cavrini V, Andrisano V. β-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol. 2003;65:407–16. https://doi.org/10.1016/S0006-2952(02)01514-9.

    Article  CAS  PubMed  Google Scholar 

  24. Youdim MBH, Buccafusco JJ. CNS targets for multi-functional drugs in the treatment of Alzheimer’s and Parkinson’s diseases. J Neural Transm. 2005;112:519–37. https://doi.org/10.1007/s00702-004-0214-z.

    Article  CAS  PubMed  Google Scholar 

  25. Kochi A, Eckroat TJ, Green KD, Mayhoub AS, Lim MH, Garneau-Tsodikova S. A novel hybrid of 6-chlorotacrine and metal–amyloid-β modulator for inhibition of acetylcholinesterase and metal-induced amyloid-β aggregation. Chem Sci. 2013;4:4137–45. https://doi.org/10.1039/C3SC51902C.

    Article  CAS  Google Scholar 

  26. Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother. 2018;106:553–65. https://doi.org/10.1016/j.biopha.2018.06.147.

    Article  CAS  PubMed  Google Scholar 

  27. Eckroat TJ, Manross DL, Cowan SC. Merged tacrine-based, multitarget-directed acetylcholinesterase inhibitors 2015–present: synthesis and biological activity. Int J Mol Sci. 2020;21:5965.

    Article  CAS  PubMed Central  Google Scholar 

  28. Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48:6523–43. https://doi.org/10.1021/jm058225d.

    Article  CAS  PubMed  Google Scholar 

  29. Nath R, Pathania S, Grover G, Akhtar MJ. Isatin containing heterocycles for different biological activities: analysis of structure activity relationship. J Mol Struct. 2020;1222:128900 https://doi.org/10.1016/j.molstruc.2020.128900.

    Article  CAS  Google Scholar 

  30. Medvedev A, Igosheva N, Crumeyrolle-Arias M, Glover V. Isatin: role in stress and anxiety. Stress. 2005;8:175–83. https://doi.org/10.1080/10253890500342321.

    Article  CAS  PubMed  Google Scholar 

  31. d’Ischia M, Palumbo A, Prota G. Adrenalin oxidation revisited. New products beyond the adrenochrome stage. Tetrahedron. 1988;44:6441–6. https://doi.org/10.1016/S0040-4020(01)89832-X.

    Article  Google Scholar 

  32. Kumar R, Bansal RC, Mahmood A. Isatin, an inhibitor of acetylcholinesterase activity in rat brain. Biogenic Amines. 1993;9:281–9.

    CAS  Google Scholar 

  33. Hyatt JL, Moak T, Hatfield MJ, Tsurkan L, Edwards CC, Wierdl M, et al. Selective inhibition of carboxylesterases by isatins, indole-2,3-diones. J Med Chem. 2007;50:1876–85. https://doi.org/10.1021/jm061471k.

    Article  CAS  PubMed  Google Scholar 

  34. Ozgun DO, Yamali C, Gul HI, Taslimi P, Gulcin I, Yanik T, et al. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J Enzyme Inhib Med Chem. 2016;31:1498–501. https://doi.org/10.3109/14756366.2016.1149479.

    Article  CAS  PubMed  Google Scholar 

  35. Noshi S, Zaigham K, Shahzad KA, Rana TM. Synthesis and estimation of enzyme inhibitory activity of isatin derivatives. Biomed Lett. 2016;2:49–52.

    Google Scholar 

  36. Marques CS, López Ó, Bagetta D, Carreiro EP, Petralla S, Bartolini M, et al. N-1,2,3-triazole-isatin derivatives for cholinesterase and β-amyloid aggregation inhibition: a comprehensive bioassay study. Bioorg Chem. 2020;98:103753 https://doi.org/10.1016/j.bioorg.2020.103753

    Article  CAS  PubMed  Google Scholar 

  37. Vishnu MS, Pavankumar V, Kumar S, Raja AS. Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem. 2019;14:1359–76. https://doi.org/10.1002/cmdc.201900277.

    Article  CAS  PubMed  Google Scholar 

  38. Riederer P, Danielczyk W, Grünblatt E. Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology. 2004;25:271–7. https://doi.org/10.1016/S0161-813X(03)00106-2.

    Article  CAS  PubMed  Google Scholar 

  39. Pizzinat N, Copin N, Vindis C, Parini A, Cambon C. Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn-Schmiedeberg Arch Pharmacol. 1999;359:428–31. https://doi.org/10.1007/PL00005371.

    Article  CAS  Google Scholar 

  40. Riazimontazer E, Sadeghpour H, Nadri H, Sakhteman A, Tüylü Küçükkılınç T, Miri R, et al. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Bioorg Chem. 2019;89:103006 https://doi.org/10.1016/j.bioorg.2019.103006.

    Article  CAS  PubMed  Google Scholar 

  41. Gaumont A-C, Gulea M, Levillain J. Overview of the chemistry of 2-thiazolines. Chem Rev. 2009;109:1371–401. https://doi.org/10.1021/cr800189z.

    Article  CAS  PubMed  Google Scholar 

  42. Davyt D, Serra G. Thiazole and oxazole alkaloids: isolation and synthesis. Marine Drugs. 2010;8:2755–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dholakia SP, Patel AR, Kanada KB, Solanki KP. Thiazoline - a key heterocycle for new drug discovery. Aegaeum J. 2020;8:53–8. 16.10089.AJ.2020.V8I3.285311.2914.

    Google Scholar 

  44. Carmeli S, Moore RE, Patterson GL. Mirabazoles, minor tantazole-related cytotoxins from the terrestrial blue-green alga scytonema mirabile. Tetrahedron Lett. 1991;32:2593–6. https://doi.org/10.1016/S0040-4039(00)78793-4.

    Article  CAS  Google Scholar 

  45. Hawkins CJ, Lavin MF, Marshall KA, Van den Brenk AL, Watters DJ. Structure-activity relationships of the lissoclinamides: cytotoxic cyclic peptides from the ascidian Lissoclinum patella. J Med Chem. 1990;33:1634–8. https://doi.org/10.1021/jm00168a016.

    Article  CAS  PubMed  Google Scholar 

  46. Blokhin AV, Yoo HD, Geralds RS, Nagle DG, Gerwick WH, Hamel E. Characterization of the interaction of the marine cyanobacterial natural product curacin A with the colchicine site of tubulin and initial structure-activity studies with analogues. Mol Pharmacol. 1995;48:523.

    CAS  PubMed  Google Scholar 

  47. Johnson BA, Anker H, Meleney FL. Bacitricin: a new antibiotic produced by a member of the B. subtilis group. Science. 1945;102:376 https://doi.org/10.1126/science.102.2650.376.

    Article  CAS  PubMed  Google Scholar 

  48. Donia MS, Wang B, Dunbar DC, Desai PV, Patny A, Avery M, et al. Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Natural Prod. 2008;71:941–5. https://doi.org/10.1021/np700718p.

    Article  CAS  Google Scholar 

  49. Kline T, Andersen NH, Harwood EA, Bowman J, Malanda A, Endsley S, et al. Potent, novel in vitro inhibitors of the Pseudomonas aeruginosa deacetylase LpxC. J Med Chem. 2002;45:3112–29. https://doi.org/10.1021/jm010579r.

    Article  CAS  PubMed  Google Scholar 

  50. Caujolle R, Baziard-Mouysset G, Favrot JD, Payard M, Loiseau PR, Amarouch H, et al. Synthèse, activités anti-parasitaire et anti-fongique d’arylalkyl- et d’arylvinylthiazolines. Eur J Med Chem. 1993;28:29–35. https://doi.org/10.1016/0223-5234(93)90076-Q.

    Article  CAS  Google Scholar 

  51. Lagorce J-F, Comby F, Rousseau A, Buxeraud J, Raby C. Synthesis and antithyroid activity of pyridine, pyrimidine and pyrazine derivatives of thiazole-2-thiol and 2-thiazoline-2-thiol. Chem Pharm Bull. 1993;41:1258–60. https://doi.org/10.1248/cpb.41.1258.

    Article  CAS  Google Scholar 

  52. Lynch DE, Hayer R, Beddows S, Howdle J, Thake CD. Synthesis and activity of four (N,N-dimethylamino)benzamide nonsteroidal anti-inflammatory drugs based on thiazole and thiazoline. J Heterocyclic Chem. 2006;43:191–7. https://doi.org/10.1002/jhet.5570430130.

    Article  CAS  Google Scholar 

  53. Elliott GT, Nagle WA, Kelly KF, McCollough D, Bona RL, Burns ER. In-vitro antiproliferative activity of 4-substituted 2-(2-hydroxyphenyl)thiazolines on murine leukemia cells. J Med Chem. 1989;32:1039–43. https://doi.org/10.1021/jm00125a018.

    Article  CAS  PubMed  Google Scholar 

  54. Heugebaert TS, Vervaecke LP, Stevens CV. Gold(III) chloride catalysed synthesis of 5-alkylidene-dihydrothiazoles. Org Biomol Chem. 2011;9:4791–4. https://doi.org/10.1039/c1ob05509g.

    Article  CAS  PubMed  Google Scholar 

  55. Petit M, Linden A, Heimgartner H, Mlostoń G. Reaktion von phenyldiazomethan mit 1,3-thiazol-5(4H)-thionen: Basenkatalysierte Ring-Öffnung des Primäradduktes. Helvetica Chim Acta. 1994;77:1076–86. https://doi.org/10.1002/hlca.19940770421.

    Article  CAS  Google Scholar 

  56. Ellman GL, Courtney KD, Andres V Jr., Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  PubMed  Google Scholar 

  57. The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D15. https://doi.org/10.1093/nar/gky1049.

    Article  PubMed Central  Google Scholar 

  58. Stavrakov G, Philipova I, Lukarski A, Atanasova M, Zheleva D, Zhivkova Z, et al. Galantamine-curcumin hybrids as dual-site binding acetylcholinesterase inhibitors. Molecules. 2020;25. https://doi.org/10.3390/molecules25153341.

  59. Atanasova M, Stavrakov G, Philipova I, Zheleva D, Yordanov N, Doytchinova I. Galantamine derivatives with indole moiety: docking, design, synthesis and acetylcholinesterase inhibitory activity. Bioorg Med Chem. 2015;23:5382–9. https://doi.org/10.1016/j.bmc.2015.07.058.

    Article  CAS  PubMed  Google Scholar 

  60. Green K, Fosso M, Garneau-Tsodikova S. Multifunctional donepezil analogues as cholinesterase and BACE1 inhibitors. Molecules. 2018;23. https://doi.org/10.3390/molecules23123252.

  61. Costa M, Josselin R, Silva D, Cardoso S, May N, Chaves S, et al. Donepezil-based hybrids as multifunctional anti-Alzheimer’s disease chelating agents: effect of positional isomerization. J Inorg Biochem. 2020;206. https://doi.org/10.1016/j.jinorgbio.2020.111039.

  62. Krátký M, Štěpánková Š, Vorčáková K, Švarcová M, Vinšová J. Novel cholinesterase inhibitors based on O-aromatic N,N-disubstituted carbamates and thiocarbamates. Molecules. 2016;21:191.

    Article  PubMed Central  Google Scholar 

  63. Vorčáková K, Májeková M, Horáková E, Drabina P, Sedlák M, Štěpánková Š. Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorg Chem. 2018;78:280–9. https://doi.org/10.1016/j.bioorg.2018.03.012.

    Article  PubMed  Google Scholar 

  64. Sang Z, Wang K, Shi J, Cheng X, Zhu G, Wei R, et al. Apigenin-rivastigmine hybrids as multi-target-directed liagnds for the treatment of Alzheimer’s disease. Eur J Med Chem. 2020;187. https://doi.org/10.1016/j.ejmech.2019.111958.

  65. Wang L, Wang Y, Tian Y, Shang J, Sun X, Chen H, et al. Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorg Med Chem. 2017;25:360–71. https://doi.org/10.1016/j.bmc.2016.11.002.

    Article  CAS  PubMed  Google Scholar 

  66. Segel IH. Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry. 2nd ed. John Wiley & Sons, Inc.; 1976.

  67. Bornstein JJ, Eckroat TJ, Houghton JL, Jones CK, Green KD, Garneau-Tsodikova S. Tacrine-mefenamic acid hybrids for inhibition of acetylcholinesterase. MedChemComm. 2011;2:406–12. https://doi.org/10.1039/c0md00256a.

    Article  CAS  Google Scholar 

  68. Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg Med Chem Lett. 2008;18:2905–9. https://doi.org/10.1016/j.bmcl.2008.03.073.

    Article  CAS  PubMed  Google Scholar 

  69. Silva MA, Kiametis AS, Treptow W. Donepezil inhibits acetylcholinesterase via multiple binding modes at room temperature. J Chem Inf Model. 2020;60:3463–71. https://doi.org/10.1021/acs.jcim.9b01073.

    Article  CAS  PubMed  Google Scholar 

  70. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61. https://doi.org/10.1002/jcc.21334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through Penn State Behrend new faculty start-up funds (T.J.E.), a Penn State Behrend Undergraduate Student 2021 Academic Year Research Grant (S.M.D.), and a Penn State Behrend Undergraduate Student 2021 Summer Research Fellowship (S.M.D.). The Bruker Avance 400 NMR Spectrometer used in this work was made possible by gifts from the Thomas Lord Charitable Trust and The Orris C. Hirtzel and Beatrice Dewey Hirtzel Memorial Foundation. Mass spectrometric analyses were performed at the Penn State Proteomics and Mass Spectrometry Core Facility, University Park, PA, and we thank Dr. Tatiana Laremore for help with HRMS sample preparation and data collection. We thank Jerry Magraw (Penn State Behrend) for assistance with instrumentation and Dr. Michael Justik (Penn State Behrend) for helpful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd J. Eckroat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, S.M., Eckroat, T.J. Isatin-linked 4,4-dimethyl-5-methylene-4,5-dihydrothiazole-2-thiols for inhibition of acetylcholinesterase. Med Chem Res 30, 2289–2300 (2021). https://doi.org/10.1007/s00044-021-02800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02800-y

Keywords

Navigation