Skip to main content

Advertisement

Log in

Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the present study, ketoprofen-p-aminobenzoic acid (KP-PABA) co-crystal was prepared, to advance solubility and dissolution rate of drug, by solvent evaporation technique employing central composite experimental design. The optimized batch as recommended by the experimental design was characterized by FTIR, DSC, XRD, SEM, and NMR studies and further, evaluated for in-vitro and in-vivo anti-inflammatory and analgesic activities. The solubility and % drug release of different batches of co-crystal was found to be between 34.20–60.11 µg/ml and 68.11–93.45%, respectively. Physical characterization by X-ray diffraction spectra and differential scanning calorimetric studies confirmed the crystallinity of prepared co-crystal. The IC50 value of optimized batch of co-crystal formulation and pure drug was observed as 248.79 µg/ml and 524.40 µg/ml, respectively, displaying that co-crystal formulation possesses more percentage protection against protein denaturation than the drug ketoprofen. The results of in-vivo anti-inflammatory activity carried out by rat paw edema method revealed that the optimized batch of co-crystal preparation provided a significant % inhibition in paw volume in contrast to standard drug in wistar rats. Hence, the crystalline molecular complex of ketoprofen with p-aminobenzoic acid was documented that set out an improvement in solubility and also in anti-inflammatory activity of the drug in wistar rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sarraguça MC, Ribeiro PR, Dos Santos AO, Lopes JA. Batch statistical process monitoring approach to a cocrystallization process. J Pharm Sci. 2015;104:4099–108. https://doi.org/10.1002/jps.24623.

    Article  CAS  PubMed  Google Scholar 

  2. Soares FL, Carneiro RL. Green synthesis of ibuprofen–nicotinamide cocrystals and in-line evaluation by Raman spectroscopy. Cryst Growth Des. 2013;13:1510–7. https://doi.org/10.1021/cg3017112.

    Article  CAS  Google Scholar 

  3. Harriss BI, Vella-Zarb L, Wilson C, Evans IR. Furosemide cocrystals: Structures, hydrogen bonding, and implications for properties. Cryst Growth Des. 2014;14:783–91. https://doi.org/10.1021/cg401662d.

    Article  CAS  Google Scholar 

  4. Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG. Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38:9–17. https://doi.org/10.1016/j.ejps.2009.05.010.

    Article  CAS  PubMed  Google Scholar 

  5. Chow SF, Shi L, Ng WW, Leung KH, Nagapudi K, Sun CC, et al. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014;14:5079–89. https://doi.org/10.1021/cg5007007.

    Article  CAS  Google Scholar 

  6. Childs SL, Stahly GP, Park A. The salt− cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm. 2007;4:323–38. https://doi.org/10.1021/mp0601345.

    Article  CAS  PubMed  Google Scholar 

  7. Berry DJ, Steed JW. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv Drug Deliv Rev. 2017;117:3–24. https://doi.org/10.1016/j.addr.2017.03.003.

    Article  CAS  PubMed  Google Scholar 

  8. da Silva CC, Pepino RD, de Melo CC, Tenorio JC, Ellena J. Controlled synthesis of new 5-fluorocytosine cocrystals based on the p K a rule. Cryst Growth Des. 2014:4383–93. https://doi.org/10.1021/cg500502j.

  9. Aitipamula S, Chow PS, Tan RB. Polymorphism in cocrystals: a review and assessment of its significance. Cryst Eng Comm. 2014;16:3451–65. https://doi.org/10.1039/C3CE42008F.

    Article  CAS  Google Scholar 

  10. Lee KS, Kim KJ, Ulrich J. Formation of salicylic acid/4, 4′‐dipyridyl cocrystals based on the ternary phase diagram. Chem Eng Technol. 2015;38:1073–80. https://doi.org/10.1002/ceat.201400738.

    Article  CAS  Google Scholar 

  11. Shayanfar A, Jouyban A. Physicochemical characterization of a new cocrystal of ketoconazole. Powder Technol. 2014;262:242–8. https://doi.org/10.1016/j.powtec.2014.04.072.

    Article  CAS  Google Scholar 

  12. Ganesh M, Ubaidulla U, Rathnam G, Jang HT. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. Int J Biol Macromol. 2019;131:879–85. https://doi.org/10.1016/j.ijbiomac.2019.03.141.

    Article  CAS  PubMed  Google Scholar 

  13. Mutalik S, Anju P, Manoj K, Usha AN. Enhancement of dissolution rate and bioavailability of aceclofenac: a chitosan-based solvent change approach. Int J Pharm. 2008;350:279–90. https://doi.org/10.1016/j.ijpharm.2007.09.006.

    Article  CAS  PubMed  Google Scholar 

  14. Alvani A, Jouyban A, Shayanfar A. The effect of surfactant and polymer on solution stability and solubility of tadalafil-methylparaben cocrystal. J Mol Liq. 2019;281:86–92. https://doi.org/10.1016/j.molliq.2019.02.080.

    Article  CAS  Google Scholar 

  15. Rahman Z, Agarabi C, Zidan AS, Khan SR, Khan MA. Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS Pharm Sci Tech. 2011;12:693–704. https://doi.org/10.1208/s12249-011-9603-4.

    Article  CAS  Google Scholar 

  16. Lyn LY, Sze HW, Rajendran A, Adinarayana G, Dua K, Garg S. Crystal modifications and dissolution rate of piroxicam. Acta Pharm. 2011;61:391–402. https://doi.org/10.2478/v10007-011-0037-z.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang YX, Wang LY, Dai JK, Liu F, Li YT, Wu ZY, et al. The comparative study of cocrystal/salt in simultaneously improving solubility and permeability of acetazolamide. J Mol Str. 2019;1184:225–32. https://doi.org/10.1016/j.molstruc.2019.01.090.

    Article  CAS  Google Scholar 

  18. Gautam MK, Besan M, Pandit D, Mandal S, Chadha R. Cocrystal of 5-fluorouracil: characterization and evaluation of biopharmaceutical parameters. AAPS Pharm Sci Tech. 2019;20:1–7. https://doi.org/10.1208/s12249-019-1360-9.

    Article  CAS  Google Scholar 

  19. Kaleemullah M, Jiyauddin K, Thiban E, Rasha S, Al-Dhalli S, Budiasih S, et al. Development and evaluation of Ketoprofen sustained release matrix tablet using Hibiscus rosa-sinensis leaves mucilage. Saudi Pharm J. 2017;25:770–9. https://doi.org/10.1016/j.jsps.2016.10.006.

    Article  CAS  PubMed  Google Scholar 

  20. Rençber S, Karavana SY, Özyazici M. Bioavailability file: ketoprofen. FABAD J Pharm Sci. 2009;34:203.

    Google Scholar 

  21. Bhatia M, Devi S. Development, characterisation and evaluation of PVP K-30/PEG solid dispersion containing ketoprofen. ACTA Pharm Sci. 2020;58. https://doi.org/10.23893/1307-2080.APS.05806.

  22. Bhatia M, Devi R. Enhanced solubility and drug release of ketoprofen using lyophilized bovine serum albumin solid dispersion. ACTA Pharm Sci. 2019;57. https://doi.org/10.23893/1307-2080.APS.05703.

  23. Hezave AZ, Aftab S, Esmaeilzadeh F. Micronization of ketoprofen by the rapid expansion of supercritical solution process. J Aerosol Sci. 2010;41:821–33.

    Article  CAS  Google Scholar 

  24. Vittal GV, Deveswaran R, Bharath S, Basavaraj BV, Madhavan V. Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design. Int J Pharm Investig. 2012;2:150. https://doi.org/10.4103/2230-973X.104398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nikumbh KV, Sevankar SG, Patil MP. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv. 2015;22:509–15. https://doi.org/10.3109/10717544.2013.859186.

    Article  CAS  PubMed  Google Scholar 

  26. Ambala R, Vemula SK. Formulation and characterization of ketoprofen emulgels. J Appl Pharm Sci. 2015;5:112–7. https://doi.org/10.7324/JAPS.2015.50717.

    Article  CAS  Google Scholar 

  27. Attia MF, Anton N, Khan IU, Serra CA, Messaddeq N, Jakhmola A, et al. One-step synthesis of iron oxide polypyrrole nanoparticles encapsulating ketoprofen as model of hydrophobic drug. Int J Pharm. 2016;508:61–70. https://doi.org/10.1016/j.ijpharm.2016.04.073.

    Article  CAS  PubMed  Google Scholar 

  28. Gul R, Ahmed N, Ullah N, Khan MI, Elaissari A. Biodegradable ingredient-based emulgel loaded with ketoprofen nanoparticles. AAPS Pharm Sci Tech.2018;19:1869–81. https://doi.org/10.1208/s12249-018-0997-0.

    Article  CAS  Google Scholar 

  29. Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. NANOMED- Nanotechnol. 2010;6:753–9. https://doi.org/10.1016/j.nano.2010.06.003.

    Article  CAS  Google Scholar 

  30. Xi MM, Wang XY, Fang KQ, Gu Y. Study on the characteristics of pectin–ketoprofen for colon targeting in rats. Int J Pharm. 2005;298:91–7. https://doi.org/10.1016/j.ijpharm.2005.04.012.

    Article  CAS  PubMed  Google Scholar 

  31. Kluge J, Fusaro F, Casas N, Mazzotti M, Muhrer G. Production of PLGA micro-and nanocomposites by supercritical fluid extraction of emulsions: I. Encapsulation of lysozyme. J Supercrit Fluids. 2009;50:327–35. https://doi.org/10.1016/j.supflu.2009.05.002.

    Article  CAS  Google Scholar 

  32. Perpétuo GL, Chierice GO, Ferreira LT, Fraga-Silva TF, Venturini J, Arruda MS, et al. A combined approach using differential scanning calorimetry with polarized light thermomicroscopy in the investigation of ketoprofen and nicotinamide cocrystal. Thermochim Acta. 2017;651:1–0. https://doi.org/10.1016/j.tca.2017.02.014.

    Article  CAS  Google Scholar 

  33. Maheshwari C, André V, Reddy S, Roy L, Duarte T, Rodríguez-Hornedo N. Tailoring aqueous solubility of a highly soluble compound via cocrystallization: effect of coformer ionization, pH max and solute–solvent interactions. Cryst Eng Comm. 2012;14:4801–11. https://doi.org/10.1039/C2CE06615G.

    Article  CAS  Google Scholar 

  34. Sathisaran I, Dalvi SV. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10:108. https://doi.org/10.3390/pharmaceutics10030108.

    Article  CAS  PubMed Central  Google Scholar 

  35. Sanphui P, Kumar SS, Nangia A. Pharmaceutical cocrystals of niclosamide. Cryst Growth Des. 2012;12:4588–99. https://doi.org/10.1021/cg300784v.

    Article  CAS  Google Scholar 

  36. Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di-and tricarboxylic acids with 44’-bipyridines isonicotinamide Bin ternary cocrystals. Cryst Eng Comm. 2005;7:551–62. https://doi.org/10.1039/B509162D.

    Article  CAS  Google Scholar 

  37. Sun S, Zhang X, Cui J, Liang S. Identification of the Miller indices of a crystallographic plane: a tutorial and a comprehensive review on fundamental theory, universal methods based on different case studies and matters needing attention. Nanoscale. 2020;12:16657–77. https://doi.org/10.1039/D0NR03637D.

    Article  CAS  PubMed  Google Scholar 

  38. Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71:359. https://doi.org/10.4103/0250-474X.57283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart JJ. Stewart Computational Chemistry, MOPAC2016. Colorado Springs. 2016; http://OpenMOPAC.net.

  40. Granovsky AA, Firefly version 8, http://classic.chem.msu.su/gran/firefly/index.html.

  41. Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–92. https://doi.org/10.1002/jcc.22885.

    Article  CAS  PubMed  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8. https://doi.org/10.1016/0263-7855(96)00018-5.

    Article  CAS  PubMed  Google Scholar 

  43. Sarkar A, Rohani S. Cocrystals of acyclovir with promising physicochemical properties. J Pharm Sci. 2015;104:98–105. https://doi.org/10.1002/jps.24248.

    Article  CAS  PubMed  Google Scholar 

  44. Farrag Y, Ide W, Montero B, Rico M, Rodríguez-Llamazares S, Barral L, et al. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int J Biol Macromol. 2018;114:426–33. https://doi.org/10.1016/j.ijbiomac.2018.03.134.

    Article  CAS  PubMed  Google Scholar 

  45. Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, et al. Luteolin cocrystals: characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol. 2019;50:248–54. https://doi.org/10.1016/j.jddst.2019.02.004.

    Article  CAS  Google Scholar 

  46. Chavan RR, Hosamani KM. Microwave-assisted synthesis, computational studies and antibacterial/anti-inflammatory activities of compounds based on coumarin-pyrazole hybrid. R Soc Open Sci. 2018;5:172435. https://doi.org/10.1098/rsos.172435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Alshaikh RA, Essa EA, El Maghraby GM. Eutexia for enhanced dissolution rate and anti-inflammatory activity of nonsteroidal anti-inflammatory agents: caffeine as a melting point modulator. Int J Pharm. 2019;563:395–405. https://doi.org/10.1016/j.ijpharm.2019.04.024.

    Article  CAS  PubMed  Google Scholar 

  48. Shandil A, Yadav M, Sharma N, Nagpal K, Jindal DK, Deep A, et al. Targeting keratinocyte hyperproliferation, inflammation, oxidative species and microbial infection by biological macromolecule-based chitosan nanoparticle-mediated gallic acid–rutin combination for the treatment of psoriasis. Polym Bull. 2020;77:4713–38. https://doi.org/10.1007/s00289-019-02984-9.

    Article  CAS  Google Scholar 

  49. Komakech R, Kim YG, Matsabisa GM, Kang Y. Anti-inflammatory and analgesic potential of Tamarindus indica Linn.(Fabaceae): a narrative review. Integr Med Res. 2019;8:181–6. https://doi.org/10.1016/j.imr.2019.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mondal A, Maity TK, Bishayee A. Analgesic and anti-inflammatory activities of quercetin-3-methoxy-4′-glucosyl-7-glucoside isolated from Indian medicinal plant Melothria heterophylla. Medicines. 2019;6:59. https://doi.org/10.3390/medicines6020059.

    Article  CAS  PubMed Central  Google Scholar 

  51. Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharma J. 2012;20:63–7. https://doi.org/10.1016/j.jsps.2011.08.001.

    Article  Google Scholar 

  52. Olbert M, Gdula-Argasińska J, Nowak G, Librowski T. Beneficial effect of nanoparticles over standard form of zinc oxide in enhancing the anti-inflammatory activity of ketoprofen in rats. Pharmacol Rep. 2017;69:679–82.

    Article  CAS  Google Scholar 

  53. Kulkarni SK. Heat and other physiological stress-induced analgesia: catecholamine mediated and naloxone reversible response. Life Sci. 1980;27:185–8. https://doi.org/10.1016/0024-3205(80)90136-8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to Department of Pharmaceutical Sciences, Central Instrumentation Laboratory and Material Science Laboratory, Guru Jambheshwar University of Science and Technology, Hisar for providing necessary facilities to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Devi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The procedure followed for animal handling is in accordance with the protocol as approved for animal study (CPCSEA Reg. no-IAEC/2020/10-18) by the Institutional Animal Ethical Committee, Guru Jambheshwar University of Science and Technology, Hisar, India.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, M., Kumar, A., Verma, V. et al. Development of ketoprofen-p-aminobenzoic acid co-crystal: formulation, characterization, optimization, and evaluation. Med Chem Res 30, 2090–2102 (2021). https://doi.org/10.1007/s00044-021-02794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02794-7

Keywords

Navigation