Skip to main content
Log in

Curcumin-cinnamaldehyde hybrids as antiproliferative agents against women’s cancer cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Curcumin and cinnamaldehyde are natural products whose antineoplastic activity has been well explored in biological evaluations. However, their poor chemical stability under physiological conditions has been an obstacle to their use as therapeutic agents. Herein, we designed and synthesized two series of curcumin-cinnamaldehyde hybrids by removing reactive functionalities, including β-diketone and aldoxyl moieties. All compounds were evaluated by the MTT assay to determine their antiproliferative activity against women’s cancer cells. Compound 5a (3′-hydroxychalcone) demonstrated potent antiproliferative activity against all cancer cell lines tested, with IC50 values ranging from 2.7 to 36.5 µM. Compound 5a was more active and selective than curcumin and cinnamaldehyde (parent compounds) against the CaSki, SiHa, C33, and A431 cell lines, displaying a higher selectivity index (SI = 8.5) than curcumin (SI = 0.8) toward the non-tumorigenic HaCaT cell line. Clonogenic experiments indicated that compound 5a inhibited A431 colony formation in a concentration-dependent manner. In addition, 5a was more stable than its parent compounds in pH 7.4 at 37 °C. In silico investigations suggested that 5a has good drug-likeness properties. In conclusion, our results indicate the use of curcumin and cinnamaldehyde as parent compounds for the design of hybrids with attractive antiproliferative activity and chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tewari D, Rawat P, Singh PK. Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol. 2019;123:522–35.

    Article  CAS  PubMed  Google Scholar 

  2. Iarc—International Agency for Research on Cancer (2019) Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf Accessed 25 Nov 2019.

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  4. Ren Y, Hao S, Jin X, Ye F, Gong Y, Jiang Y, et al. Effects of adjuvant chemotherapy in T1N0M0 triple-negative breast cancer. Breast. 2019;43:97–104.

    Article  PubMed  Google Scholar 

  5. Bolatti EM, Chouhy D, Casal PE, Pérez GR, Stella EJ, Sanchez A, et al. Characterization of novel human papillomavirus types 157, 158 and 205 from healthy skin and recombination analysis in genus γ-papillomavirus. Infect Genet Evol. 2016;42:20–29.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg D, Gomez-Martinez RA. Vulvar cancer. Obstet Gynecol Clin North Am. 2019;46:125–35.

    Article  PubMed  Google Scholar 

  7. Globocan–Iarc. Mundo. https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf Accessed 29 Mar 2020.

  8. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharm Physiol. 2012;39:283–99.

    Article  CAS  Google Scholar 

  9. Fabra MJ, Castro-Mayorga JL, Randazzo W, Lagarón JM, López-Rubio A, Aznar R, et al. Efficacy of cinnamaldehyde against enteric viruses and its activity after incorporation into biodegradable multilayer systems of interest in food packaging. Food Environ Virol. 2016;8:125–32.

    Article  CAS  PubMed  Google Scholar 

  10. Srivastava NS, Srivastava RAK. Curcumin and quercetin synergistically inhibit cancer cell proliferation in multiple cancer cells and modulate Wnt/β-catenin signaling and apoptotic pathways in A375 cells. Phytomedicine. 2019;52:117–28.

    Article  CAS  PubMed  Google Scholar 

  11. Wani KD, Kadu BS, Mansara P, Gupta P, Deore AV, Chikate RC, et al. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLoS ONE. 2014;9:e107315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Paulraj F, Abas F, Lajis NH, Othman I, Hassan SS, Naidu R. The curcumin analogue 1,5-bis(2-hydroxyphenyl)-1,4- pentadiene-3-one induces apoptosis and downregulates E6 and E7 oncogene expression in HPV16 and HPV18-infected cervical cancer cells. Molecules. 2015;20:11830–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh R, Koppikar SJ, Paul P, Gilda S, Paradkar AR, Kaul-Ghanekar R. Comparative analysis of cytotoxic effect of aqueous cinnamon extract from Cinnamomum zeylanicum bark with commercial cinnamaldehyde on various cell lines. Pharm Biol. 2009;47:1174–9.

    Article  Google Scholar 

  14. Maher DM, Bell MC, O’Donnell EA, Gupta BK, Jaggi M, Chauhan SC. Curcumin suppresses human papillomavirus oncoproteins, restores p53, Rb, and PTPN13 proteins and inhibits benzo[a]pyrene-induced upregulation of HPV E7. Mol Carcinog. 2011;50:47–57.

    Article  CAS  PubMed  Google Scholar 

  15. Nagle AA, Gan F, Jones G, So C, Wells G, Chew E. Induction of tumor cell death through targeting tubulin and evoking dysregulation of cell cycle regulatory proteins by multifunctional cinnamaldehydes. PLoS ONE. 2012;7:e50125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong S, Ismail IA, Kang S, Han DC, Kwon B. Cinnamaldehydes in cancer chemotherapy. Phytother Res. 2016;30:754–67.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin: miniperspective. J Med Chem. 2017;60:1620–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lima FT, Seba V, Silva G, Torrezan GS, Polaquini CR, Pinhanelli VC, et al. The curcumin analog CH-5 exerts anticancer effects in human osteosarcoma cells via modulation of transcription factors p53/Sp1. Int J Mol Sci. 2018;19:1909.

    Article  PubMed Central  CAS  Google Scholar 

  19. Oliveira ABB, Matos RPA, Stuqui B, Torrezan GS, Polaquini CR, Regasini LO, et al. Cytotoxicity and antitumoral activity by apoptosis induction of AC13: a brominated curcumin analogue. Pharmacogn Mag. 2018;14:611–6.

    Article  CAS  Google Scholar 

  20. Silva G, Lima FT, Seba V, Lourenço ALM, Lucas TG, Andrade BV, et al. Curcumin analog CH-5 suppresses the proliferation, migration, and invasion of the human gastric cancer cell line HGC-27. Molecules. 2018;23:279.

    Article  PubMed Central  CAS  Google Scholar 

  21. Polaquini CR, Torrezan GS, Santos VR, Nazaré AC, Campos DL, Almeida LA, et al. Antibacterial and antitubercular activities of cinnamylideneacetophenones. Molecules. 2017;22:1685.

    Article  PubMed Central  CAS  Google Scholar 

  22. Marques BC, Santos MB, Anselmo DB, Monteiro DA, Gomes E, Saiki MFC, et al. Methoxychalcones: effect of methoxyl group toward antifungal, antibacterial and antiproliferative activities. Med Chem. 2020;16:881–91.

    Article  CAS  PubMed  Google Scholar 

  23. Nazaré‚ AC, Polaquini CR, Cavalca LB, Anselmo DB, Saiki MFC, Monteiro DA. et al. Design of antibacterial agents: alkyl dihydroxybenzoates against Xanthomonas citri subsp. citri. Int J Mol Sci. 2018;19:3050

    Article  CAS  Google Scholar 

  24. Franken NAP, Rodermond HM, Stap J, Haveman J, Bree CV. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.

    Article  CAS  PubMed  Google Scholar 

  25. Pereira RM, Ferreira-Silva GA, Pivatto M, Santos LA, Bolzani VS, Paula DAC, et al. Alkaloids derived from flowers of Senna spectabilis, (−)-cassine and (−)-spectaline, have antiproliferative activity on HepG2 cells for inducing cell cycle arrest in G1/S transition through ERK inactivation and downregulation of cyclin D1 expression. Toxicol Vitr. 2016;31:86–92.

    Article  CAS  Google Scholar 

  26. Polaquini CR, Morão LG, Nazaré AC, Torrezan GS, Dilarri G, Cavalca LB, et al. Antibacterial activity of 3,3′-dihydroxycurcumin (DHC) is associated with membrane perturbation. Bioorg Chem. 2019;90:103031.

    Article  CAS  PubMed  Google Scholar 

  27. Molinspiration. Molinspiration cheminformatics. 2019. http://www.molinspiration.com Accessed 24 Nov 2019.

  28. Eliyatkin N, Yalcin E, Zengel B, Aktas S, Vardar E. Molecular classification of breast carcinoma: from traditional, old-fashioned way to a new age, and a new way. J Breast Health. 2015;11:59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldhirsch A, Wood WC, Coats AS, Gelber RD, Thürlimann B, Senn H-J. Panel members. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer. Ann. Oncol. 2011;22:1736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yao H, He G, Yan S, Che C, Song L, Rosol TJ. et al. Triple negative breast cancer: is there a treatment on the horizon? Oncotarget. 2017;8:1913–24.

    Article  PubMed  Google Scholar 

  31. Burd EM. Human Papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang R, Zhang X, Chen C, Chen G, Zhong Q, Zhang Q, et al. Synthesis and evaluation of 1,7-diheteroarylhepta-1,4,6-trien-3-ones as curcumin-based anticancer agents. Eur J Med Chem. 2016;110:164–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu J, Lu W, Cui L. Inhibitory effect of curcumin on invasion of skin squamous cell carcinoma A431 cells. Asian Pac J Cancer Prev. 2015;16:2813–8.

    Article  PubMed  Google Scholar 

  34. Jackson PA, Widen JC, Harki DA, Brummond KM. Covalent modifiers: a chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-Michael addition reactions. J Med Chem. 2017;60:839–85.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J, Yun D, Yao J, Fu W, Huang F, Chen L, et al. Design, synthesis and QSAR study of novel isatin analogues inspired Michael acceptor as potential anticancer compounds. Eur J Med Chem. 2018;144:493–503.

    Article  CAS  PubMed  Google Scholar 

  36. Shin J, Ohnishi K, Murakami A, Lee J, Kundu JK, Na H, et al. Zerumbone induces heme oxygenase-1 expression in mouse skin and cultured murine epidermal cells through activation of Nrf2. Cancer Prev Res. 2011;4:860–70.

    Article  CAS  Google Scholar 

  37. Liu R, Heiss EH, Schachner D, Jiang B, Liu W, Breuss JM, et al. Xanthohumol blocks proliferation and migration of vascular smooth muscle cells in vitro and reduces neointima formation in vivo. J Nat Prod. 2017;80:2146–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Barnette AR, Andreansky S, Landgraf R. ERBB2 overexpression establishes ERBB3-dependent hypersensitivity of breast cancer cells to withaferin A. Mol Cancer Ther. 2016;15:2750–7.

    Article  CAS  PubMed  Google Scholar 

  39. Raja SM, Clubb RJ, Ortega-Cava C, Williams SH, Bailey TA, Duan L, et al. Anticancer activity of celastrol in combination with ErbB2-targeted therapeutics for treatment of ErbB2-overexpressing breast cancers. Cancer Biol Ther. 2011;11:263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mai CW, Yaeghoobi M, Abd-Rahman N, Kang YB, Pichika MR. Chalcones with electron-withdrawing and electron-donating substituents: anticancer activity against TRAIL resistant cancer cells, structure-activity relationship analysis and regulation of apoptotic proteins. Eur J Med Chem. 2014;77:378–87.

    Article  CAS  PubMed  Google Scholar 

  41. Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117:7762–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: structural and molecular target perspectives. Eur J Med Chem. 2015;98:69–114.

    Article  CAS  PubMed  Google Scholar 

  43. Seba V, Silva G, Santos MB, Baek SJ, França SC, Fachin AL, et al. Chalcone derivatives 4′-amino-1-naphthyl-chalcone (D14) and 4′-amino-4-methyl-1-naphthyl-chalcone (D15) suppress migration and invasion of osteosarcoma cells mediated by p53 regulating EMT-related genes. Int J Mol Sci. 2018;19:2838.

    Article  PubMed Central  CAS  Google Scholar 

  44. Santos MB, Anselmo DB, Oliveira JG, Jardim-Perassi BV, Monteiro D, Silva G, et al. Antiproliferative activity and p53 upregulation effects of chalcones on human breast cancer cells. J Enzym Inhib Med Chem. 2019;34:1093–9.

    Article  CAS  Google Scholar 

  45. Santos MB, Pinhanelli VC, Garcia MAR, Silva G, Baek SJ, França SC, et al. Antiproliferative and pro-apoptotic activities of 2′- and 4′-aminochalcones against tumor canine cells. Eur J Med Chem. 2017;138:884–9.

    Article  CAS  PubMed  Google Scholar 

  46. Silva G, Marins M, Chaichanasak N, Yoon Y, Fachin AL, Pinhanelli VC, et al. Trans-chalcone increases p53 activity via DNAJB1/HSP40 induction and CRM1 inhibition. PLoS ONE. 2018;13:e0202263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Polkam N, Ramaswamy VR, Rayam P, Allaka TR, Anantaraju HS, Dharmarajan S, et al. Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. Bioorg Med Chem Lett. 2016;26:2562–8.

    Article  CAS  PubMed  Google Scholar 

  48. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.

    Article  CAS  Google Scholar 

  49. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–23.

    Article  CAS  PubMed  Google Scholar 

  50. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem. 2001;44:1841–6.

    Article  CAS  PubMed  Google Scholar 

  51. Muegge I. Selection criteria for drug-like compounds. Med Res Rev. 2003;23:302–21.

    Article  CAS  PubMed  Google Scholar 

  52. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem. 1999;1:55–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Finance Code 001), Brazilian Council for Scientific and Technological Development (CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grants #471129/2013-5, 306251/2016-7, 429322/2018-6 and 309957/2019-2), and São Paulo Research Foundation (FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo, Grants #2014/18330-0 and 2018/15083-2). D.B.A. thanks CAPES (Finance Code 001) for the scholarships granted. All authors thank the Center for Biomolecular Innovation (FAPESP Grant #2009/53989-4), National Institute of Science and Technology – Biodiversity and Natural Products INCT-BioNat (FAPESP #2014/50926-0 and CNPq #465637/2014-0), and National Institute of Science and Genomics Technology for Citrus Improvement INCT-Citrus (FAPESP #2014/50880-0 and CNPq #465440/2014- 2). The authors thank Kerstin Markendorf, a native translator, for English translation and scientific writing contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis O. Regasini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anselmo, D.B., Polaquini, C.R., Marques, B.C. et al. Curcumin-cinnamaldehyde hybrids as antiproliferative agents against women’s cancer cells. Med Chem Res 30, 2007–2015 (2021). https://doi.org/10.1007/s00044-021-02783-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02783-w

Keywords

Navigation